Advanced Test & Balance Report Review

Scott Fielder National Comfort Institute, Inc.

Content and illustrations © NCI, Inc. 2020

The Final TAB Report

This is the final product of the TAB Professional.

When the painter is done, the walls change color.

When the electrician is finished, the lights come on.

When the TAB Professional is complete, we hand over a stack of paper and ask to be paid thousands of dollars.

This better be a REALLY good stack of paper.

The Final TAB Report

The final TAB Report is a POWERFUL Document!

It Proves Substantial Completion.

Retention for ALL Trades is often held up by the Final TAB Report.

The Certificate of Occupancy is often pending a final TAB Report.

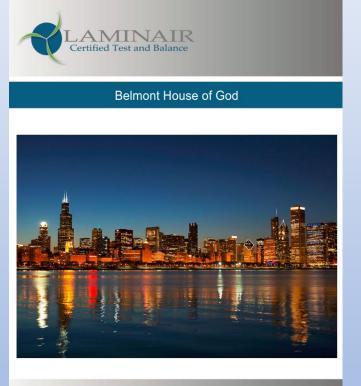
The final TAB Report can be the difference between Liquidated Damages or completion.

It's not uncommon for TAB Reports to be subpoenaed during legal proceedings.

Preliminary TAB Report Review

When the TAB Report is first received, there are a handful of things that can be determined at a glance, in order to determine if there are any potential problems.

There are several elements that should stand out, prior to a thorough review of the data.


What follows are some highlights of what to look for upon initial receipt of the TAB Report.

Sample TAB Report Covers that demonstrate time and care was put into compiling and publishing the data.

MEMORIAL UNIVERSITY OCEAN SCIENCES CENTRE

HVAC TAB Report Memorial University, Ocean Sciences Centre

> Direct Flow Balancing Inc. NBC Certified professional TAB Firm (709) 693- 0791 danadirectflow@gmail.com

NATIONAL BALANCING COUNCIL Certification Number 15-001-03

© 2016 - LaminAir Test & Balance, Inc.

Look for terms such as "Preliminary", "Progress" or

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Final (revised) Testing Adjusting & Balancing Report Metrobus New Transit Depot Freshwater Road St. John's, NL
Date Submitted	Friday, October-25-13

Does the TAB Report have a Table of Contents, Abbreviations, Executive Summary, and other details?

Page 3 of 99	
INDEX	
ABBREVIATIONS	
INSTRUMENT CALIBRATION	5
EQUIPMENT	PAGE
Summary - Summary	
Air Handling Unit - DOAS-1	9
Rect Duct Trav - DOAS-1	
Air Distribution - DOAS-1 / OUTSIDE AIR	11
Fan BD/DD - DOAS-1	
Rect Duct Trav - DOAS-1	
Air Distribution - DOAS-1 / EXHAUST	
Air Handling Unit - HFC-1	
Air Distribution - HFC-1 / SUPPLY	
Air Distribution - HFC-1 / RETURN	
Air Handling Unit - HFC-2	
Air Distribution - HFC-2 / SUPPLY	
Air Distribution - HFC-2 / RETURN	
Air Handling Unit - HFC-3A	
Air Distribution - HFC-3A / SUPPLY	
Air Distribution - HFC-3A / RETURN	
Air Handling Unit - HFC-3B	
Air Distribution - HFC-3B / SUPPLY	
Air Distribution - HFC-3B / RETURN	
Air Handling Unit - CFC-5A	
Air Handling Unit - CFC-5B	
Air Handling Unit - CFC-5C	
Air Handling Unit - CFC-5D	
Air Handling Unit - HFC-7A	
Air Distribution - HFC-7A / SUPPLY	
Air Distribution - HFC-7A / RETURN	
Air Handling Unit - HFC-9	
Air Distribution - HFC-9 / SUPPLY	
Air Distribution - HFC-9 / RETURN	
Air Handling Unit - HFC-10A	
Air Distribution - HFC-10A / SUPPLY	
Air Distribution - HFC-10A / RETURN	
Air Handling Unit - HFC-11	
Air Distribution - HFC-11 / SUPPLY	
Air Distribution - HFC-11 / RETURN.	
Air Handling Unit - HFC-14	
Air Distribution - HFC-14 / SUPPLY	
Air Distribution - HFC-14 / RETURN.	47
Air Handling Unit - HFC-15 Air Distribution - HFC-15 / SUPPLY	
Air Distribution - HFC-15 / SOPPLY	
Air Distribution - HFC-15 / REFORN	
Air Handling Unit - HFC-16.	
Air Distribution - HFC-16 / SOPPLY	
Air Distribution - HFC-16 / RETURN	
Air Handling Unit - HFC-17A.	
Air Distribution - HFC-17A / SUPPLY Air Distribution - HFC-17A / RETURN	
Air Distribution - HFC-1/A / RETURN Air Handling Unit - HFC-17B	
Air Handling Unit - HFC-17B / SUPPLY.	
Air Distribution - HFC-17B / SUPPLY	
Air Distribution - HFC-17B / RETURN. Air Handling Unit - HFC-18A	
	00

		DIRECT FLGW				
X	Supply	Тят	Round Traverse		Square Diffuser	DIRECT FLOW BALANCING INC
R	Return		Unit Heater		3 Way Mixing Valve 3 Way Motorized	Mt Pearl, NL 709 693 0791 danadirectflow@gmail.com
	Exhaust		Hydronic Heat Recovery Coll	OA	diverting Valve Outside Air	Project Name Huskey Energy
FA	Fresh Air	[mmmmmmm]	Wall Fin Perimeter Hydronic HTG.	SA RA	Supply Air Return Air	Mechanical Contractor
	VAV Box	ĹœŗĴ	Static Pressure (Pa)	EA CFM	Exhaust Air Cubic Feet Per Minute	Tristar Mechanicial LTD 26 Dundee Ave
3 60 63	Diffuser Tag & ID No.	₽	2 way Motorized Valve	l/s GPM	Liters per Second Gallons Per Minute	Mt Pearl NL 709-747-5755
7	Balancing Damper	:X	Circuit Setter	cu	Condensing Unit	Customer
	Supply Duct	<u>∽</u> • §	Hot Water	CC AHU	Cooling Coll Air Handling Unit	East Port Properties 235 Water Street
=	Return Duct Exhaust Duct Fresh Air Duct	Ŧ	Chilled Water Domestic Water	L	Louver Volume Damper	St. John's NL 709-738-4100
()	Centrifugal Supply/Return	\square	Hydronic Pump	HP	Horsepower	Engineer
		\lor			Malla	
\bigcirc	Fan Motorized	Ð	HTG/Cool Coll	V FLA	Volts Full Load Amps	Stantec Consulting LTD. 141 Kelsey Drive
I	Fan	•	Hydronic Cooling			Stantec Consulting LTD. 141 Kelsey Drive St. John's NL 709-738-0122
\bigcirc	Fan Motorized Damper	0	Hydronic Cooling Coll	FLA SF PF SP	Full Load Amps Service Factor Power Factor Static Pressure	Stantec Consulting LTD. 141 Kelsey Drive St. John's NL
	Fan Motorized Damper Air Flow		Hydronic Cooling	FLA SF PF	Full Load Amps Service Factor Power Factor	Stantec Consulting LTD. 141 Kelsey Drive St. John's NL 709-738-0122 stantec.com General Contractor Trendex Construction
	Fan Motorized Damper Air Flow Station Heat Exchanger	0	Hydronic Cooling Coil Hydronic Heating	FLA SF PF SP BHP DNA DNL	Full Load Amps Service Factor Power Factor Static Pressure Break Horsepower Data Not Available Data Not Listed	Stantec Consulting LTD. 141 Kelsey Drive St. John's NL 709-738-0122 stantec.com General Contractor Trendex Construction & Management Inc Box, 5962. Stn C
	Fan Motorized Damper Air Flow Station	0	Hydronic Cooling Coll Hydronic Heating Coll Electric Heating Coll Propane Heat	FLA SF PF SP BHP DNA	Full Load Amps Service Factor Power Factor Static Pressure Break Horsepower Data Not Available	Stantec Consulting LTD. 141 Kelsey Drive St. John's NL 709-738-0122 stantec.com General Contractor Trendex Construction & Management Inc
	Fan Motorized Damper Air Flow Station Heat Exchanger Variable		Hydronic Cooling Coll Hydronic Heating Coll Electric Heating Coll	FLA SF PF SP BHP DNA DNL UTM	Full Load Amps Service Factor Power Factor Static Pressure Break Horsepower Data Not Available Data Not Listed Unable to Measure	Stantec Consulting LTD. 141 Kelsey Drive St. John's NL 709-738-0122 stantec.com General Contractor Trendex Construction & Management Inc Box, 5962. Stn C St. John's NL
	Fan Motorized Damper Air Flow Station Heat Exchanger Variable Speed Drive Rectangular		Hydronic Cooling Coll Hydronic Heating Coll Electric Heating Coll Propane Heat Exchanger	FLA SF PF BHP DNA DNL UTM NA	Full Load Amps Service Factor Power Factor Static Pressure Break Horsepower Data Nct Available Data Nct Listed Unable to Measure Nct Accessible Nct Taken- no valid	Stantec Consulting LTD. 141 Kelsey Drive St. John's NL 709-738-0122 stantec.com General Contractor Trendex Construction & Management Inc Box, 5962. Stn C St. John's NL 709-738-3232
	Fan Motorized Damper Air Flow Station Heat Exchanger Variable Speed Drive Rectangular		Hydronic Cooling Coll Hydronic Heating Coll Electric Heating Coll Propane Heat Exchanger	FLA SF PF BHP DNA DNL UTM NA	Full Load Amps Service Factor Power Factor Static Pressure Break Horsepower Data Nct Available Data Nct Listed Unable to Measure Nct Accessible Nct Taken- no valid	Stantec Consulting LTD. 141 Kelsey Drive St. John's NL 709-738-0122 stantec.com General Contractor Trendex Construction & Management Inc Box, 5962. Stn C St. John's NL 709-738-3232 Owner East Port Properties TAB Suervisor
	Fan Motorized Damper Air Flow Station Heat Exchanger Variable Speed Drive Rectangular		Hydronic Cooling Coll Hydronic Heating Coll Electric Heating Coll Propane Heat Exchanger	FLA SF PF BHP DNA DNL UTM NA	Full Load Amps Service Factor Power Factor Static Pressure Break Horsepower Data Nct Available Data Nct Listed Unable to Measure Nct Accessible Nct Taken- no valid	Stantec Consulting LTD. 141 Kelsey Drive St. John's NL 709-738-0122 stantec.com General Contractor Trendex Construction & Management Inc Box, 5962. Stn C St. John's NL 709-738-3232 Owner East Port Properties

© 2016 National Balancing Council/Direct Flow Balancing Inc.

	FOR INFORMATION	NATIONAL BALANCING COUN			
	PROJECT INFORMATIO	ON			
CERTIFIED BY	DARL	WORKS			
READINGS BY	F. JEREZ /	A. BROWN			
PROJECT DATE	11.3	.2014			
PROJECT NUMBER	14.2	2535			
	PROJECT NAME AND LOC.	ATION			
PROJECT NAME	ZEPHYRHILLS P	UBLIC LIBRARY			
ADDRESS	5347 8TF	I STREET			
CITY, STATE, ZIP	ZEPHYRHILLS,	FLORIDA 33542			
	MECHANICAL CONTRAC	TOR			
COMPANY NAME	TOTAL AIR	SOLUTIONS			
ADDRESS	1050 CORPOR	ATE AVENUE			
CITY, STATE, ZIP	NORTH PORT, FLORIDA, 34289				
PHONE	941.42	26.1770			
E-MAIL/WEB	TMEYER@TO]	FALAIRFL.COM			
	MECHANICAL ENGINE	ER			
COMPANY NAME	CONSULTING ENGINEE	RING ASSOCIATES INC.			
ADDRESS	5100 WEST LEMON STREET SUITE 305				
CITY, STATE, ZIP	TAMPA,FL0	ORIDA,33609			
PHONE	813.28	36.3488			
E-MAIL/WEB	WWW.CEA-EN	GINEERS.COM			
	ARCHITECT ENGINE	R			
COMPANY NAME	HARVARD JOLLY	Y ARCHITECTURE			
ADDRESS	2714 DR. MARTIN LUTHER	R KING JR. STREET NORT			
CITY, STATE, ZIP	ST.PETERSBURG	3, FLORIDA 33704			
PHONE	727.89	06.4611			
E-MAIL/WEB	WWW.HARVA	RDJOLLY.COM			
	GENERAL CONTRACT	OR			
COMPANY NAME	A D MORO	GAN CORP.			
ADDRESS	716 N. RENE	ELLIE DRIVE			
CITY, STATE, ZIP	TAMPA, FLO	ORIDA, 33609			
PHONE	TEL:813.832.3033	FAX:813.831.9860			
E-MAIL/WEB	ADMOR	GAN COM			

CARIBE FLOW HVAC ENGINEERS

15-Nov-16 Project Number 140132074

NATIONAL BALANCING COUNCIL

Does it have a warranty statement? Regardless of Certification Requirements, TAB professionals should warranty their work, and are required to by most specifications.

WARRANTY OF TAB SERVICES

LaminAir Test & Balance, Inc. provides a one (1) year warranty for all Test, Adjust & Balance work associated with this project. The warranty period is one (1) year from the date on this report, or one (1) year from the last date of work performed on job site (whichever is earlier).

Voiding Warranty & Additional Charges:

In the event a warranty issue arises and it is discovered to be attributed to a control or maintenance related failure, any equipment / mechanical failure, or if it is found to be unrelated to any TAB work performed, the return trip will be subject to a trip fee, and any diagnostic charges related to the trip be applied to the applicable between the applicable betw

IMPORTANT (3rd party involvement voids warranty):

LaminAir Test & Balance, Inc. reserves the right of exclusivity issues, errors, or omissions related to or associated with all TA provided within this report. If any third party or competing commissioning (RCX) or commissioning (CX) performs any work of modifies any equipment, controls, or fluid flows...

Air Balance Guarantee

We Guarantee Honesty In What We Do, As Well As Good Customer Service And Satisfaction On Each Job. If There Seems To Be An Error On Our Part, We Will Rectify The Situation At Our Expense.

Test & Balance On Your Project Is Guaranteed For One Year And / Or Per the Duration Of Time As Set Forth In The Project Documents.

The report should bare the stamp of a certified TAB Supervisor. The stamp should have the following information:

- 1. Certifying Organization
- 2. Name of Certified TAB Supervisor
- 3. Certification Number
- 4. Certification Expiration

Examples of INVALID Certifications

Examples of INVALID Certifications

Examples of INVALID Certifications

How To Read & Interpret a TAB Report Certification

- All certifying organizations have standards and requirements as to what must appear in that report.
- Most specifying Engineers and design teams state what information they require in the TAB report.
- Many chain stores, corporations and other entities have specific requirements as to what they want to see included.
- The certification also provides recourse to the end user via the TAB professionals certifying organization.

Distribution List

Distribution list includes the team members who should receive copies of the certified TAB report.

- 1. TAB Firm
- 2. Mechanical Contractor
- 3. General Contractor
- 4. Design Team
- 5. Owner
- 6. Any other relevant parties as dictated by the scope of work (Cx Agent, Controls Contractor, Authority Having Jurisdiction, Bonding Agency, etc.)

Distribution

PROJECT: Melink Corporation 1234

ARCHITECT: Architects LLC

MECH. ENGINEER: David Smith

GEN. CONTRACTOR: Diego Associates

LOCATION: 5140 River Valley Road, Milford, OH 45150

Standard Distribution lists.

Project:

East Coast Wings and Grill 2637 East Stone Drive, Suite F Kingsport TN, 37660

Architect/Engineer:

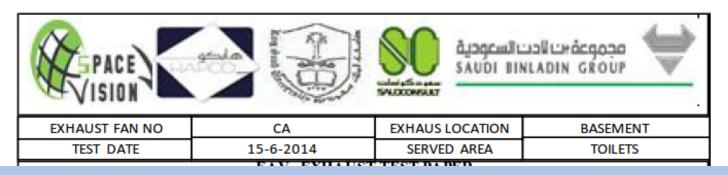
MBI (michael brady Inc.) 299 N. Weisgarber RD Knoxville, TN 37919 P: (865) 584-0999

HVAC Contractor:

S.B. White Co., Inc. 226 East Market Street Johnson City, TN 37601 P: (423) 926-8127

TAB Contractor:

Provision Environmental Systems & Testing LLC 1117 Dennis Lane Surgoinsville, TN 37873 P: (423) 754-3736



Distribution List - Further Examples

Instrument Calibration List

Required by ALL Certifying Organizations and should include all required instrumentation, with the following data.

- 1. Instrument
- 2. Make
- 3. Model
- 4. Serial Number
- 5. Function
- 6. Calibration Date

Instrument Calibration List - Incomplete

		INSTRUMENT LIST							
		INSTRUMENT	MANUFACTURER	MODEL	SERIAL N	O. RANGE	CALIBRATION DATE		
		HYDRODATA	SHORTRIDGE	HDM-250	W99056	-10 – 150 psi	12/10/2018		
		FLOWHOOD	SHORTRIDGE	8400	M88606	25 – 2500 cfm 0.0001 – 60.00	11/14/2018		
		MULTIMETER	SHORTRIDGE	ADM-870		in.w.c			
		VANE/ ANEMOMETER	ALNOR	RVA801	A00732	50-2500fpm	06/19/2018		
		TACHOMETER	SHIMPO	MT-200	B168B501	1p 0 – 99,999 rpm	07/10/2018		
		VOLT METER	FLUKE	336	83706361	1 0-600VAC	03/01/2019		
		TEMP METER	COOPER ATKINS	SRH77A	01111801	7 -40 – 300 F	03/11/2019		
Regardless of TAB (Certifi	cation, list d	oesn't meet A	NY of th	e				
TAB Certify	ing o	rganization's	requirements	5.					
		1	1		1		1		

Instrument Calibration List -Complete

PROJECT: First Apostolic Church Maryville, TN

INSTRUMENT	MODEL NO.	SERIAL NO.	APPLICATION	DATES OF USE	CAL. DATE
Airflow					
Shortridge ADM	880C	M15136	Airflow	6/14/2017 - 9/25/2017	2/3/2017

PROJECT: First Apostolic Church Maryville, TN

INSTRUMENT	MODEL NO.	SERIAL NO.	APPLICATION	DATES OF USE	CAL. DATE
RPM					
Shimpo	DT-207LR	D1720222R	RPM	6/14/2017 - 9/25/2017	6/29/2017
Water					
Alnor	HM685	71509009	Water Pressures / Water Pressures	N/A	2/1/2017
Evergreen	8-DP-125	1600136	Water Flow / Water Pressures	N/A	11/18/2010
Dynasonics	DUFX-D1	33209	Water Flow	N/A	9/6/2016
	_				
	I .				
					_

Ideally, any deficiencies or "punch items" preventing the completion of TAB will be corrected prior to issuing the TAB report.

When this is not the case, all outstanding items MUST be included in the TAB report.

These items should be addressed in the general remarks, in a compiled list, and on the units they concern through out the report.

They are often ignored by the end user.

Should first appear in "General Remarks" or an "Executive Summary"

Observations Ventilation

The Geo-Thermal wells were balanced to design with the loop recirculation at the buffer tanks only. The system was not tested on-line with the rest of the hydronic system due to issues with the main diverting valve. The 3-way diverting valve is having trouble with the close-off pressure overcoming the discharge head of P17 and P18. This will be addressed in the near future and the circuit setters associated with this loop should be re-tested.

The Chillers was not functional at the time of final TAB services and therefore will have to be checked after a successful start of the 2 chillers. Associated coiling coils will need to be re-checked also.

IN-Floor Radiant Heating was originally balanced and failed to meet design. The system was flushed and the trapped air was purged before the re-testing was finished. System balanced to design after the maintenance was performed on the IFRH panels. All flows were tested to design spec and recorded.

VAV Reheats were adjusted to their minimum flows but accurate flows were not possible to record. The circuit setters were 20 mm and are over-sized to the design flows and the head pressures were too low to record from the manufactures specifications. The main loop circuit setters were able to be adjusted for the sections associated which should allow for close to design flow.

Unit Heaters, Radiant Panels & Perimeter heating was adjusted at the circuit setters and were close to design, no issues to report. Several Radiant Htg. Panel circuit setters should be sized down from the line size to obtain the flows submitted. To obtain specified flows in I/s there will be a need to size down to 12 mm from 20 mm. CS-83 should be sized up to 75 mm to accommodate the calculated flow.

Should first appear in "General Remarks" or an "Executive Summary"

Observations Ventilation

The Geo-Thermal wells were balanced to design with the loop recirculation at the buffer tanks only. The system was not tested on-line with the rest of the hydronic system due to issues with the main diverting valve. The 3-way diverting valve is having trouble with the close-off pressure overcoming the discharge head of P17 and P18. This will be addressed in the near future and the circuit setters associated with this loop should be re-tested.

The Chillers was not functional at the time of final TAB services and therefore will have to be checked after a successful start of the 2 chillers. Associated coiling coils will need to be re-checked also.

IN-Floor Radiant Heating was originally balanced and failed to meet design. The system was flushed and the trapped air was purged before the re-testing was finished. System balanced to design after the maintenance was performed on the IFRH panels. All flows were tested to design spec and recorded.

VAV Reheats were adjusted to their minimum flows but accurate flows were not possible to record. The circuit setters were 20 mm and are over-sized to the design flows and the head pressures were too low to record from the manufactures specifications. The main loop circuit setters were able to be adjusted for the sections associated which should allow for close to design flow.

Unit Heaters, Radiant Panels & Perimeter heating was adjusted at the circuit setters and were close to design, no issues to report. Several Radiant Htg. Panel circuit setters should be sized down from the line size to obtain the flows submitted. To obtain specified flows in I/s there will be a need to size down to 12 mm from 20 mm. CS-83 should be sized up to 75 mm to accommodate the calculated flow.

Outstanding Deficiencies – Executive Summary Examples

On 10.14.2014 to 10.16.2014, a Test and Balance was performed at the BACK HALL COMMAND SUITES BUILDING 24701 FORT GORDON, GEORGIA. The following report will be an accurate record of what we found, what procedures were performed, and our final test results. Our report will also reflect accurate values, not only CFM, but percentages of required supply values of each of the room and open areas. We documented the electrical, motor / fan RPM, temperatures wet bulb / dry bulb, ambient temperature and interior humidity to show how well the unit is conditioning the air.

The chilled water pump CP-2 was tested with no outstanding issues. The circuit setters that serve each AHU were also tested and balanced to specified water flows indicated on the drawings and submittals.

AHU-1: This unit is operating at 114% of design airflow with the motor sheave is adjusted to the minimum position. The unit's supply grilles were balanced proportionally with the actual airflows recorded.

AHU-2: This unit was not installed

AHU-3: This unit was relocated to RM. 224. The unit was balanced to the total airflow indicated on the drawing schedule now that the unit consists of only four grilles and not eight as shown on drawing M1-5.

AHU-4: This unit was tested and balanced to the airflow indicated on the drawing with no outstanding issues.

AHU-5: This unit is operating at 140% of design airflow with the motor sheave adjusted to the minimum position. The unit's supply grilles were balanced proportionally with the actual airflows recorded.

General Remarks

FORWARD:

Testing, adjusting and balancing performed to National Balancing Council (NBC) procedural standards has been completed on the mechanical system referenced in this report, also reflected in NBC's 230593.

Unless otherwise noted, all listed equipment, systems and controls were tested in full load demand configuration.

All specific project notes and deficiencies related to this project are enclosed in the following report pages. Any open issue items (deficiencies) listed herein have been previously forwarded to the appropriate personnel for resolution. This report reflects the current status of all tested equipment at the time of project test completion.

GENERAL PROJECT REMARKS:

Test and balance of the air systems and associated equipment at 1911 Glacier Park Ave, Naperville, IL 60540 was performed between the dates of December 30th and December 31st, 2015. Testing was scheduled after duct system installation completion and was performed on pre-existing equipment (not installed by mechanical).

Existing equipment was not specifically maintained by mechanical before test and balance work commenced, but appeared to be in good working order and previously / recently maintained, as the equipment appeared to be in good working order.

No TAB work was previously performed.

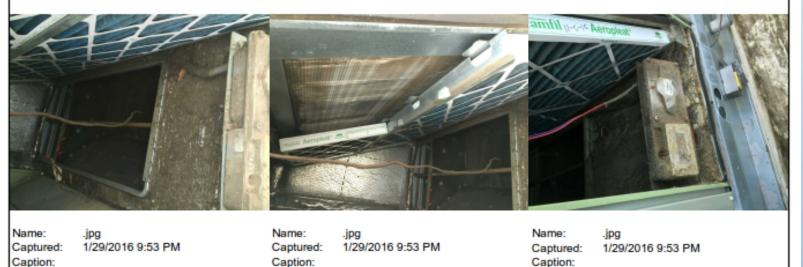
The HVAC system economizer was found inoperable. Mechanical assisted in locking blades in position to set outside air. Blade position was marked to facilitate proper setting after repairs are made. The outside air was measured to be within 10% of the design specified on ventilation schedule on the M-1 plans.

The HVAC system is at maximum performance capability. Blower motor pulley has been adjusted to maximum potential. System is short of design rated air flow capability specified on ventilation schedule. Recommendations were made to increase blower motor pulley size to Browning 1VP75 with a 1 3/8" bore and Browning BK90 belt size on the current drive package. With these changes, the HVAC system will only produce at maximum pulley setting a total of 7097 CFM, which is 88.7% of the design CFM of 8000 for the system within full load amps for the current motor.

Air flow readings represented in report are short of design rated air flows. Verification of the hood readings via ductwork traverse strongly suggests / indicates duct leakage is responsible for system deficiency (low air flow).

January 14, 2016: Mechanical contractor informed us the owner made adjustments to dampers. We will confirm on return visit.

© 2016 - LaminAir Teat & Balance, Inc.



After being referenced in the General Remarks / Executive Summary, Outstanding Deficiencies should appear in an itemized manner, preferably with pictures. The example below uses Airnab reporting software.

Deficiency ID:	0010	Status:	Open	Deficiency Priority:				
Equipment:	RTU-03				Created Date: 27-Jan-16			
	Storage				Due Date:			
Issue Description:								
Unit has excess pa	Unit has excess particulates building up on filters and coils resulting in less air flow and increased strain on overall system.							
Issue Type:	Incomplete	Job Tag:			Repair Estimate:			
Role Assignment:	Company Project Manager	Cross Ref#:	f#: Replacement Cost:					
User Assignment:								
Comments / Signatu	ife:							
Issue Photos:								

Green South Energy

Page 10 of 15

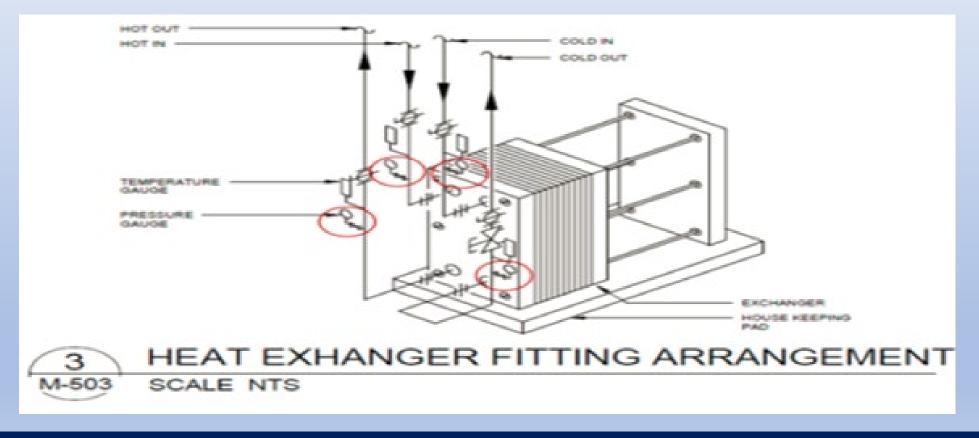
Deficiency ID:	0010	Status: Ope	Deficiency Priority:		٦
Equipment:	RTU-03		Filolity.	Created Date: 27-Jan-16	
	Storage			Due Date:	
ssue Description:					
		ers and coils resulting in less air	flow and increased strain		
ssue Type:	Incomplete	Job Tag:		Repair Estimate:	
ole Assignment:	Company Project Manager	Cross Ref#:		Replacement Cost:	
Jser Assignment:					T
Comments / Signatu	ure:				
ssue Photos:					
SYT	1.C -		Max C		100
Name: .jpg		Name: .jpg	Name:	-jpg	
Captured: 1/29/2	2016 9:53 PM	Captured: 1/29/2016 9:53 PM	Captured:	-jpg 1/29/2016 9:53 PM	
Captured: 1/29/2	2016 9:53 PM	1-0			
		Captured: 1/29/2016 9:53 PM	Captured:		

This example with corresponding pictures was created using Excel and Power Point.

			Project: Silent Hill Assisted Living	Project Num	ber: 1409				
	174 ⁷ 74		Location: Centralia, PA	Owner: Umbrella Corporation					
BA			Mechanicial Contractor: Weyland A / C	Date: 10.21.	15				
C	OUNCIL"		Certified TAB Firm: Brawndo TAB	Certified TAB Techinican: M. McF					
	TAB Deficiency Report								
			TAB Benefetey Report						
ITEM	SYSTEM	DATE	ISSUE	STATUS	CONTRACTOR				
No.					REMARKS				
001	Pump-1	10.21.15	Pump will not run in hand or automatic.						
			Error message at VFD reads "Bypass						
			Alarm 4029 Drive Faulted."						
	-			Open					
002	HX-1	10.21.15	There are no test ports installed at heat						
			exchanger. Test ports required by detail 3						
			on page M-503 of mechanical draws. Can						
			not test at this time.	Open					
003	AHU-2	10.21.15	Insulation for chilled water piping is						
			incomplete & has been wrapped in silver						
			tape. Does not impact TAB, but will cause						
004			condensation issues.	Open					
			1		· · ·				

TAB DEFICIENCY REPORT

The following pictures / details correspond with the line items from TAB Deficiency Report Dated


А	Project: Silent Hill Assisted Living	Project Number: 1409
CZ-1-2-0	Location: Centralia, PA	Owner: Umbrella Corporation
BALANCING	Mechanicial Contractor: Weyland A	/ C Date: 10.21.15
COUNCIL	Certified TAB Firm: Brawndo TAB	Certified TAB Techinican: M. McFly
	TAB Deficiency R	eport
BYPAS DRIU BYP	SALARM 4829 E FAULTED	
ITE	M #1	ITEM #2
HEAT EXHANGER F		
ITEM	I #2	ITEM #3
		KPO

Mechanical Details are useful references that assist the end user in understanding the deficiency and clarifying what actions the contractors need to take.

Is the airflow operating within the design %?

Standard inlet / outlet data sheet with design %.

At a glance, even the untrained eye can see if the values are within +/- 10% or 5% of design values.

	1								N
AREA SERVED	OUTLET			ILET DESIGN PRELIMINARY FINAL		AL	\land		
	NO.	TYPE	SIZE	CFM	CFM	%	CFM	%	REMARKS
CVS-1									
CHEMO 128	1	SUPPLY	10	360	210	58%	354	98%	
TOTALS				360	210	58%	354	98%	
	\parallel								
	\parallel								
CVS-2									
ANTI - RM	1	SUPPLY	10	215	206	96%	199	93%	
ANTI - RM	2	SUPPLY	10	270	315	117%	275	102%	
CLEAN ROOM	3	SUPPLY	10	270	336	124%	243	90%	
CLEAN ROOM	4	SUPPLY	10	270	275	102%	281	104%	
CLEAN ROOM	5	SUPPLY	10	270	171	63%	245	91%	
TOTALS				1295	1303	101%	1243	96%	

Is the airflow operating within the design %?

Sample hydronic data sheet.

HYDRONIC DATA Test Report								AZ.TEC.		
Location	UNIT	DRV Dia.	DES. FLOW	TUF	RNS	Pressure Drop	ACT. FLOW	%	BALANCING	
		inch	GPM	Kvs	Turn	KPA	GPM			
	RISER 03 & 05									
Floor-1105	FCU-F-11-2	3/4	3.6	6.4	5.9	3.2	3.3	92%		
Floor-1005	FCU-F-10-1	1/2	2.4	2.12	4	6	2.35	98%	DATE: 24-Aug-2015	
Floor-1003	FCU-F-10-2	1/2	2.4	2.12	4	6.3	2.38	99%		
Room-905	FCU-F-9-1	1/2	2.4	2.56	4.5	4.6	2.41	100%	PROJECT:	
Room-903	FCU-F-9-2	1/2	2.4	2.64	4.7	4.2	2.37	99%		
Room-805	FCU-F-8-1	1/2	2.4	1.65	3.5	9.3	2.32	97%	Lagos-Nigeria	
Room-803	FCU-F-8-2	1/2	2.4	1.65	3.5	10	2.37	99%		
Room-705	FCU-F-7-1	1/2	2.4	1.65	3.5	12	2.42	101%	SERVING:	
Room-703	FCU-F-7-2	1/2	2.4	1.65	3.5	11.7	2.43	101%	ALL FLOORS	
Room-605	FCU-F-6-1	1/2	2.4	0.65	1	68	2.41	100%		
Room-603	FCU-F-6-2	1/2	2.4	2.12	4	7	2.42	101%		
Room-505	FCU-F-5-1	1/2	2.4	1.65	3.5	10.8	2.4	100%	LOCATION:	
Room-503	FCU-F-5-2	1/2	2.4	2.12	4	5.9	2.35	98%	RISER : 03&05	
Room-405	FCU-F-4-1	1/2	2.4	1.65	3.5	6.6	2.4	100%		

Is the airflow operating within the design %?

Sample hydronic data sheet.

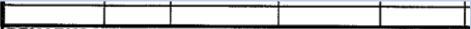
AZTEC.			port	est Re	ГА То	C DA'	ONI	HYDR	
BALANCING	%	ACT. FLOW	Pressure Drop	RNS	TUF	DES. FLOW	DRV Dia.	UNIT	Location
		GPM	KPA	Turn	Kvs	GPM	inch		
		RISER 03 & 05							
	92%	3.3	3.2	5.9	6.4	3.6	3/4	FCU-F-11-2	Floor-1105
DATE: 24-Aug-201	98%	2.35	6	4	2.12	2.4	1/2	FCU-F-10-1	Floor-1005
	99%	2.38	6.3	4	2.12	2.4	1/2	FCU-F-10-2	Floor-1003
PROJECT: EKO HOTEL	100%	2.41	4.6	4.5	2.56	2.4	1/2	FCU-F-9-1	Room-905
	99%	2.37	4.2	4.7	2.64	2.4	1/2	FCU-F-9-2	Room-903
Lagos-Nigeria	97%	2.32	9.3	3.5	1.65	2.4	1/2	FCU-F-8-1	Room-805
	99%	2.37	10	3.5	1.65	2.4	1/2	FCU-F-8-2	Room-803
SERVING:	101%	2.42	12	3.5	1.65	2.4	1/2	FCU-F-7-1	Room-705
ALL FLOORS	101%	2.43	11.7	3.5	1.65	2.4	1/2	FCU-F-7-2	Room-703
	100%	2.41	68	1	0.65	2.4	1/2	FCU-F-6-1	Room-605
/	101%	2.42	7	4	2.12	2.4	1/2	FCU-F-6-2	Room-603
LOCATION:	100% /	2.4	10.8	3.5	1.65	2.4	1/2	FCU-F-5-1	Room-505
RISER : 03&05	98% /	2.35	5.9	4	2.12	2.4	1/2	FCU-F-5-2	Room-503
	100%	2.4	6.6	3.5	1.65	2.4	1/2	FCU-F-4-1	Room-405

Is the airflow operating within the design %? If not, is there a remark?

Fan Test							
	K	FC 2		FC 3*			
		205.1		ELEV. RM. 115			
ING		205.1		KITCHEN CEILING			
F PRODUCTS	F	UJITSU		TRANE			
۹0A	AS	U36RLXB		4UXD2042A10N0AB			
0	FT	A005267		874145000046			
al %	Design	Actual	%	Design	Actual	%	
7	900	825	92%	1200	NVL		
99%	900	825	92%	1200	1027	86%	
98%	900	825	92%	1200	1027	86%	
102%	N/A	NXA		N/A	NA		

Remarks / Notes:

Unable to obtain the design CFM. Direct-Drive fan motor is adjusted to high-speed.

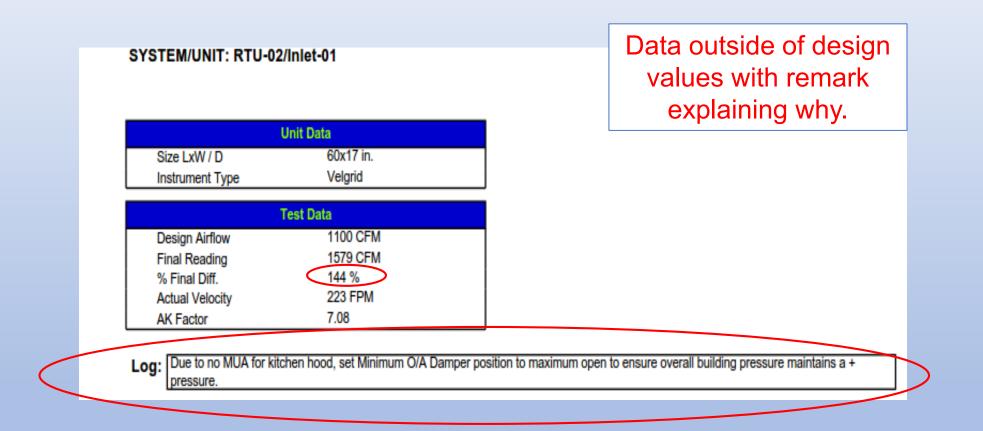


Is the Data within Design?

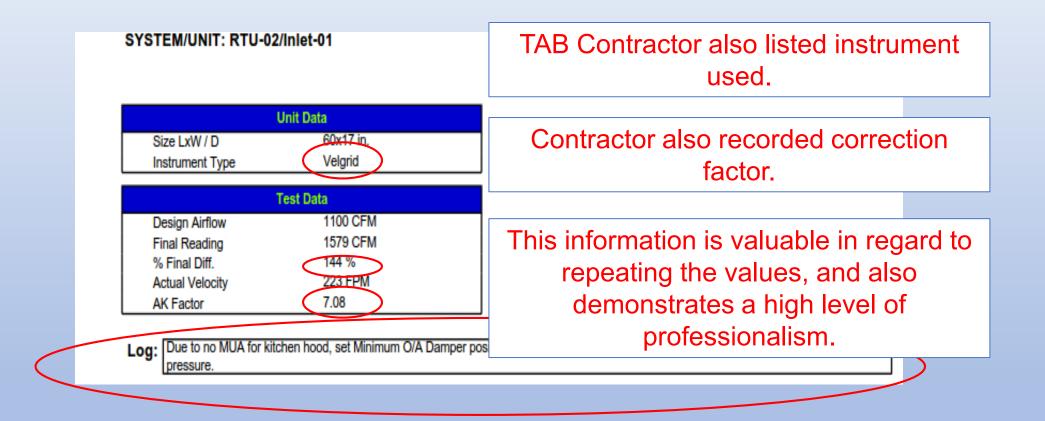
FAN	DESIGN	ACTUAL
SUPPLY AIR CFM	2000	2000
RETURN AIR CFM	2000	1385 **
OUTSIDE AIR CFM	600	615
FAN SPEED		9 62
STATIC DRESSI IRE +		2

Data outside of design values with remark explaining why.

REMARKS


** Balanced RA low to account for OA

Is the Data within Design?



Is the Data within Design?

Common requirement in multiple specifications.

Highly possible, and even *effortless* using the correct methodology.

Some flow hoods even have an algorithm that assists in balancing +/- 5%.

Some flow hoods round up to the nearest 5 CFM value, so please be aware of this.

• However balancing +/- 3%.....

:KS			÷
Estimated CFM	Initial CFM	% of Estimated	ſ
400	410	105%	
120	130	105%	
120	130	105%	
120	125	104%	
120	124	103%	
420	435	103%	
200	215	104%	
280	260	105%	
280	290	102%	
200	215	103%	
200	217	104%	1
200	220	105%	
200	222	105%	H
420	430	103%	
280	290	102%	◀
280	295	104%	
200	220	105%	
	1	/ .	

• Or balancing +/- 2%.....

Estimated	Initial	% 05
CFM	CFM	Estimated
220	230	104%
220	232	105%
200	210	104%
200	215	105%
220	235	103%
100	105	103%
200	215	104%
50	53	105%
220	240	105%
200	215	103%
200	217	104%
220	230	105%
100	105	105%
200	210	103%
80	90	105%
360	381	105%
100	105	105%
100	103	103%
200	210	104%
200	215	105%

As stated, I typically balance to plus or minus 5% as a matter of habit and practice.

I've trained hundreds of professionals to balance in like fashion, and I know many who do so.

However, I have to be suspect of +/- 3% and +/- 2%.

As a reviewing professional, I CAN NOT Review this data and state this information is false, without physically verifying the data in the field.

However.....

• On the same project where the total actual CFM equals total Design CFM, EXACTLY, and Actual TSP equals Design CFM EXACTLY.....

SYSTEM SUMMARY	DESIGN	ACTUAL	VARIANCE
Fan CFM at Total SP			
Supply CFM	4000	4000	$\mathbf{>}$
Supply Loss (max)	and state of the local division of the		
Return CFM			
Return Loss (max)			
Total Duct Loss (max)	4. T. T. T. S.		
SYSTEM PRESSURES			
Static Pressure Supply (+)		+	
Static Pressure Return (-)	-	-	
Total Static Pressure	0.60	0.60	
Fan Speed			
SYSTEM TEMPERATUR	RES		
Avg. Ret. Grille Temp.			
Avg. Sup. Grille Temp.			
System Temp Change			
SENSIBLE BTU DELIVE	RY		
1.08 X CFM X ΔT			

SYSTEM SUMMARY	DESIGN	ACTUAL	VARIANCE
Fan CFM at Total SP			
Supply CFM	3200	3200	
Supply Loss (max)			
Return CFM			1
Return Loss (max)			
Total Duct Loss (max)			
SYSTEM PRESSURES			
Static Pressure Supply (+)		+	
Static Pressure Return (-)		-	
Total Static Pressure	0.60	0.60	
Fan Speed			
SYSTEM TEMPERATUR	ES		
Avg. Ret. Grille Temp.			
Avg. Sup. Grille Temp.			
System Temp Change			
SENSIBLE BTU DELIVE	RY		
1.08 X CFM X ∆T			

• Now let us look at all of the blanks in the unit data.....

SYSTEM SUMMARY	DESIGN	ACTUAL	VARIANCE
Fan CFM at Total SP			
Supply CFM	4000	4000	
Supply Loss (max)			
Return CFM			
Return Loss (max)			/
Total Duct Loss (max)			
SYSTEM PRESSURES			
Static Pressure Supply (+)		+	
Static Pressure Return (-)		-	
Total Static Pressure	0.60	0.60	
Fan Speed	/		
SYSTEM TEMPERATUR	ES		
Avg. Ret. Grille Temp.			
Avg. Sup. Grille Temp.			
System Temp Change			
SENSIBLE BTU DELIVE	RY		
1.08 X CFM X ∆T			

SYSTEM SUMMARY	DESIGN	ACTUAL	VARIANCE
Fan CFM at Total SP			
Supply CFM	3200	3200	
Supply Loss (max)			
Return CFM	$\left(\right)$		
Return Loss (max)			
Total Duct Loss (max)			
SYSTEM PRESSURES			
Static Pressure Supply (+)		+	
Static Pressure Return (-)		-	
Total Static Pressure	0.60	0.60	
Fan Speed			
SYSTEM TEMPERATUR	ES		
Avg. Ret. Grille Temp.			
Avg. Sup. Grille Temp.			
System Temp Change			
SENSIBLE BTU DELIVE	RY		
1.08 X CFM X ∆T			

• On the same project where the total actual CFM equals total Design CFM, EXACTLY, and Actual TSP equals Design CFM EXACTLY.....

DESIGN	ACTUAL	VARIANCE
4000	4000	\mathbf{D}
Salara California		
		DESIGN ACTUAL

SYSTEM SUMMARY	DESIGN	ACTUAL	VARIANCE
Fan CFM at Total SP			
Supply CFM	3200	3200	
Supply Loss (max)			
Return CEM			1

This TAB report is unacceptable to ANY written standard.

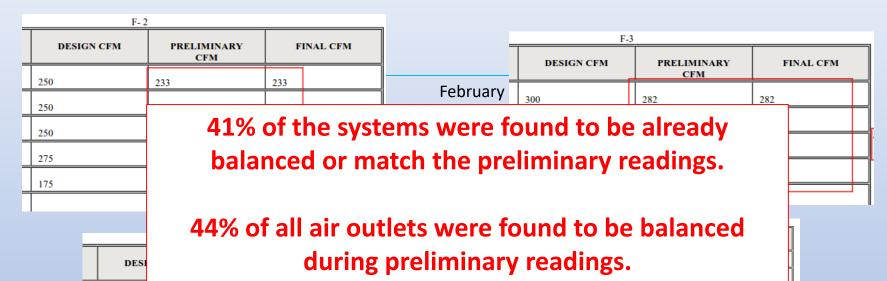
The correct way to clear this situation up is to meet the TAB contractor in the field, provide them the opportunity to defend their data.

Should they refuse to meet, then document the refusal, and bring in a second TAB firm.

System Temp Change		
SENSIBLE BTU DELIV	ERY	
1.08 X CFM X ∆T		

System Temp Change			
SENSIBLE BTU DELIV	ERY		
1.08 X CFM X ∆T			

_	F- 2						F-3		
	DESIGN CFM	PRELIMINARY CFM	F	INAL CFM			DESIGN CFM	PRELIMINARY CFM	FINAL CFM
	250	233	233			T	200		282
	250	243	243		February 1st	┿	300	282	282
	250	257	246				300	312	312
	275	267	267		_		300	277	277
-	175						300	291	291
-	1/5	171	171		=	T	L		
	1	1	I	I				1	I II


F-5		
DESIGN CFM PRELIMINARY CFM		FINAL CFM
250	244	244
250	236	236
250	258	258
250	237	237
250	241	241
200	177	177

F-8,9					
DESIGN CFM	DESIGN CFM PRELIMINARY CFM				
275	288	288			
275	304	304			
200	118	189			
425	417	417			
425	433	433			
425	397	397			
150	162	162			
200	191	191			
NA	268	268			
	DESIGN CFM 275 275 200 425 425 150 200	DESIGN CFM PRELIMINARY CFM 275 288 275 304 200 118 425 417 425 433 425 397 150 162 200 191			

250	244	244	
250	236	236	
250	258	258	
250	237	237	٦Ì I
250	241	241	1
200	177	177	1
			۳i I

200	118	189
425	417	417
425	433	433
425	397	397
150	162	162
200	191	191
NA	268	268

Then we have this....

FC 11					
DESIGN CFM	PRELIMINARY CFM	FINAL CFM			
250	244	244			
350	339	339			
250	238	238			
200	104	186			
50	89	42			
250	344	262			
250	133	263			
250	240	258			

F-12		
DESIGN CFM	PRELIMINARY CFM	FINAL CFM
300	282	282
350	312	342
350	296	348
175	167	167
75	82	82
350	224	341
		l l

4 out of 17 Systems showed some preliminary values changed, while other remained the same. This simply isn't possible on a unitary constant volume

	FC 1	11		system	F-12		
	DESIGN CFM	PRELIMINARY CFM	FINAL CFM		DESIGN CFM	PRELIMINARY CFM	FINAL CFM
	250	244	244	-	300	282	282
	350	339	339	-	350	312	342
-	250	238	238	=	350	296	348
_	200	104	186	-	550	290	546
_	50	89	42	-	175	167	167
	250	344	262	_	75	82	82
	250	133	263		350	224	341
	250	240	258	-			
		1					

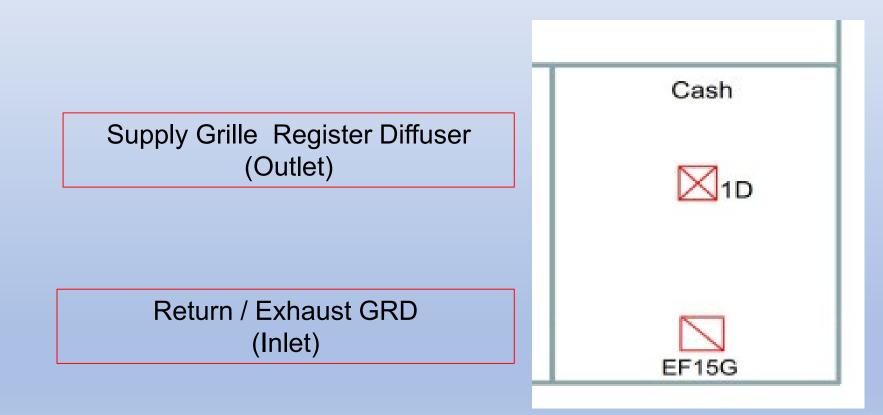
FC 1	1		
DESIGN CFM	PRELIMINARY CFM	FINAL CFM	_
250	244	244	
350	339	339	
250	238	238	
200	104	186	CFM
50	89	42	
250	344	262	
250	133	263	
250	240	258	

Perhaps the number one complaint from design teams / end users is the lack of labeled mechanical drawings in the TAB report

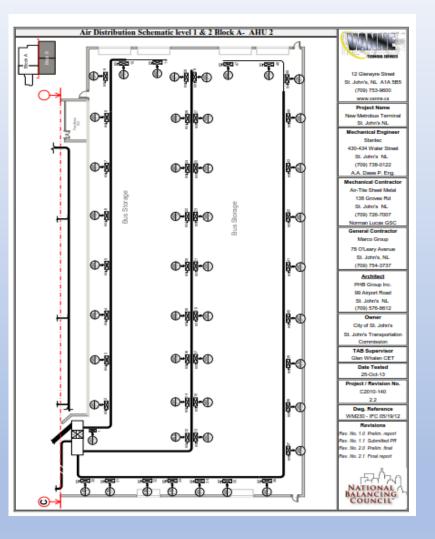
The drawings are the one document that pull all of the data together and provide a visual point of reference.

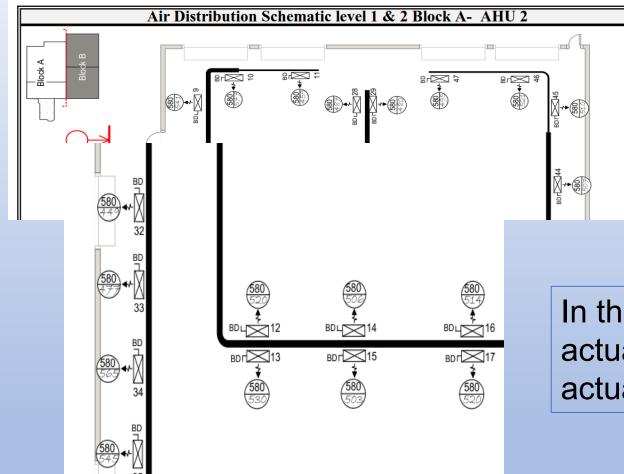
The drawings are one of the most practical elements in a TAB report.

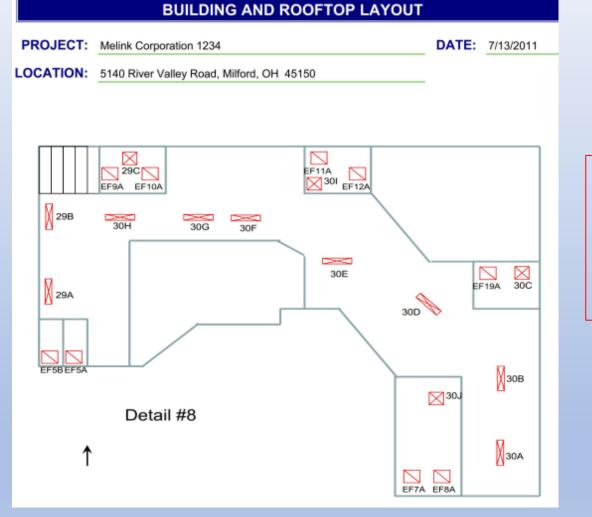
Most commonly, the MEP drawings are numbered by the TAB professional and included in the final report.


If the drawings are not available, or field conditions required multiple changes not reflected on the MEP drawings, the TAB professional has a variety of other options to fulfil this responsibility.

Mechanical Drawings 101 – Without learning every symbol used on MEP drawings, the following two symbols are the most common and allow the owners or other end users not in the trades to better understand the drawings at a glance.

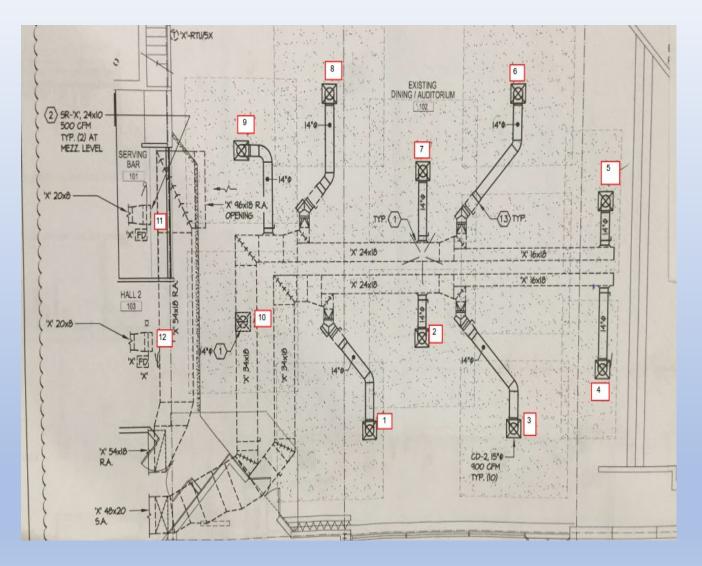



Sample of Mechanical Drawings generated by the TAB Contractor.


In this example, the TAB contractor actually took the time to include the actual CFM by each device.

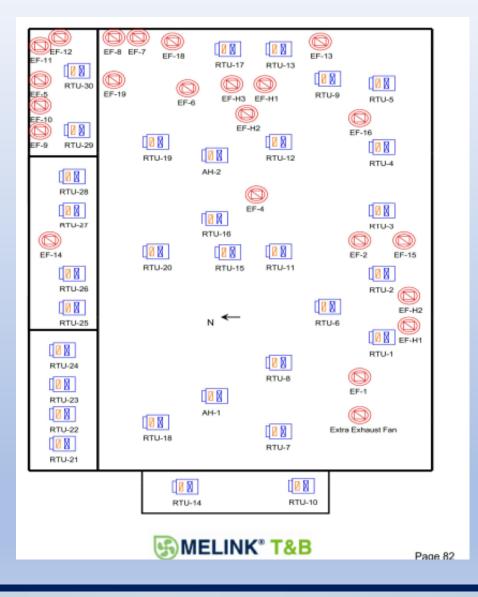
How To Read & Interpret a TAB Report

Generated by the TAB contractor for existing building where no mechanical drawings could be provided.



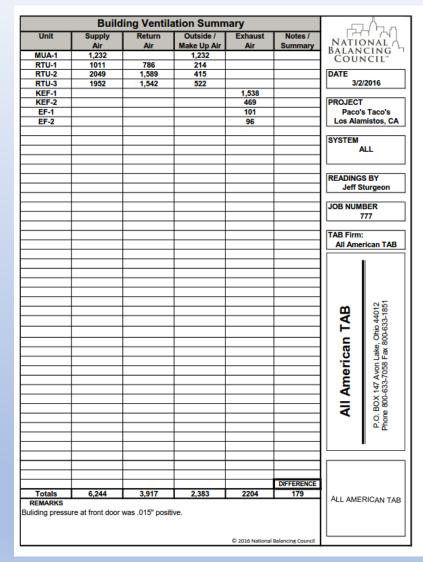
Must Include Mechanical Drawings

In this example, the TAB firm was not permitted to removed existing prints from job site. The TAB Professional took a pictures with their phone, converted to .pdf file and numbered the prints.



Must Include Mechanical Drawings

TAB contractor generated roof plan.



Additional Items

Building Ventilation Summary -

Perfect for restaurants but works with any building.

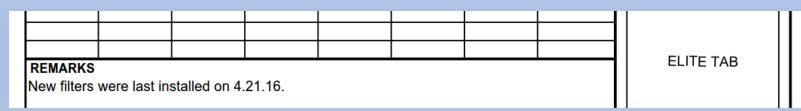
Some restaurant chains require this form.

Additional Items

Building Ventilation Summary designed to mirror the MEP Ventilation Schedule. This is useful in any building, but even more so in restaurants and even required by some chains.

	Building Ventilation Summary							
Unit	Supply	Return	Outside /	Exhaust	Notes /			
	Air	Air	Make Up Air	Air	Summary	NATIONAL A		
MUA-1	1,232		1,232			COUNCIL [™]		
RTU-1	1011	786	214			cooncil		
RTU-2	2049	1,589	415			DATE		
RTU-3	1952	1,542	522			3/2/2016		
KEF-1				1,538				
KEF-2				469		PROJECT		
EF-1				101		Paco's Taco's		
EF-2				96		Los Alamistos, CA		

					DIFFERENCE	
Totals	6,244	3,917	2,383	2204	179	
REMARKS	ALL AMERICAN TAB					
Buliding pressur	re at front door w	as .015" positiv	e.			
				© 2016 National	Balancing Council	



Additional Items

Facilities Manager Preventive Maintenance Summary. This documents is perhaps the most useful item in a TAB report for any facilities maintenance staff.

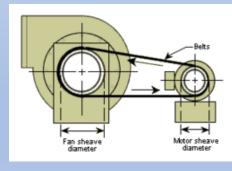
	I	<u>s</u> lha						
Unit	Number	Belt	Number	Filter	Number	Filter	Filter	
	Belts	Size	Filters	Size	Filters	Size	Туре	NATIONAL A
RTU-1	1	BX36	2	16x20x1			Media	COUNCIL [®]
RTU-2	1	BX48	4	20x20x2			Pleated	cooncie
RTU-3	1	BX48	4	20x20x2			Pleated	DATE
EF-1	1	A16						4.26.16
EF-2	1	A-24						
								PROJECT
								Dollar Max
								San Angelo, TX

Advanced TAB Report Review

- My current position, I see 3 to 30 TAB reports, every week.
- I'm always stunned by what get's through.
- I keep a log of odd things that pop up in TAB reports, when I can.
- I can't believe what get's missed in TAB reports going out the door, regardless of certification, or by design teams or by owners.
- What follows is simple tricks, using formulas, charts, fan curves, and simple logic and statistics that will allow for better TAB report review, quicker project close out, and less call backs and warranty issues.

Three Common Mistakes in Collecting Data on Belt Driven Fans:

- 1. Recording the Motor Pulley as the Fan Sheave, and vice versa
- 2. Recording the Actual Motor RPM as Actual Fan RPM, and vice versa
- 3. Bad reading on the Fan RPMs



Common Mistake with Motor and Fan Pulleys / Sheaves

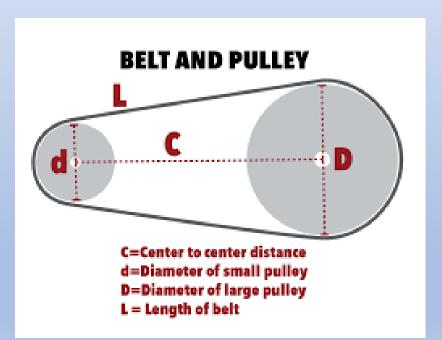
On belt-driven fans, the fan pulley/sheave is typically larger than the motor pulley/sheave. It is not uncommon for these values to be swapped in the final TAB report.

If this is noticed, apply the Max Fan RPM formula against the recorded RPMs and drive package. If it doesn't work, swap the numbers for the pulleys / sheaves and run the formula again.

Common Mistake with Motor and Fan Pulleys / Sheaves

Note: On standard, roof mounted exhaust fans the pulley / sheave sizes are typically closer in size than belt driven RTUs / AHUs etc.

The fan pulley / sheave is still typically larger and the same Max Fan RPM Formula applies.



Common Mistake with Motor and Fan Pulleys / Sheaves

When belt data is missing, confusing or not logical, apply the belt sizing formula to confirm...

Apply the Belt Sizing Formula to see if the data makes sense...

Belt Length Formula

Belt Length = $2C + [1.57 \times (D_1 + D_2)] + 1"$

Where:

- C = Distance Between Shafts
- D_1 = Diameter of the small pulley
- D_2 = Diameter of the large pulley

Page 151

Belt Length Formula

Example:

- C = Distance Between Shafts (18")
- D_1 = Diameter of the small pulley (4")

 D_2 = Diameter of the large pulley (7")

2C + $[1.57 \times (D_1 + D_2)] + 1"$ = New Belt Length 2 (18") + 1.57 x (4"+7") + 1" = 36" + (1.57 x 11") + 1" = 36" + 17.27" + 1" = 54.27" New Belt Length

Use the manufacturer's catalog and translate the calculated size into a model number.

Motor Sheave Diameter / Fan Sheave Diameter X Motor RPM = Max Fan RPM

Example:

4" Motor Sheave / 8" Fan Sheave X 1750 Motor RPM =

.5 X 1750 = 875 Max Fan RPM with that Drive Package

MODEL	ENISZIOI	PANIMUTUK	RATED	ACTUAL
MOTOR PULLEY		Fan Motor Horsepower	5	4.03
DIAMETER	4 in	Fan Motor RPM	1750	1726
SHAFT	0.5 in	Fan Motor Voltage	230	228
FIXED / ADJ	Adjustable	Fan Motor Amperage	13.2	8.1
BELT NO. & SIZE	BX-58	Fan Service Factor	1.15	1.15 😑
FAN PULLEY		Fan RPM	unknown	230
DIAMETER	30 in	TEMPERATURES	DESIGN	ACTUAL
SHAFT	1 in	Entering Air Temperature	NA	NA

				Μ
MOTOR PULLEY	\frown	Fan Motor Horsepower	1	1
DIAMETER	4 in	Fan Motor RPM	(1725)	1726
SHAFT	1 in	Fan Motor Voltage	115	110
FIXED / ADJ	Adjustable	Fan Motor Amperage	13.2	8.1
BELT NO. & SIZE	A92-4L-940	Fan Service Factor	1.1.0	1.15
FAN PULLEY	\frown	Fan RPM		(383)
DIAMETER	18 in 🔵	TEMPERATURES	DESIGN	ACTUAL

MODEL	2207	TARMOTON		NOTONE
MOTOR PULLEY	<u> </u>	Fan Motor Horsepower	0.5	0.5
DIAMETER	(4 in)	Fan Motor RPM	1725 🤇	1726
SHAFT	1 in	Fan Motor Voltage	115	110
FIXED / ADJ	Adjustable	Fan Motor Amperage	8.1	6.2
BELT NO. & SIZE	4L-690	Fan Service Factor	unknown	unknown
FAN PULLEY		Fan RPM	unknown	493
DIAMETER	(14 in)	TEMPERATURES	DESIGN	ACTUAL
CUAFT	4	Entering Air Temperature	NIA	NIA

(4" / 30") X 1726 = .1333 x 1726 = 230

(4" / 18") X 1726 = .222 x 1726 = 383

MODEL	ENI32101	FAN WOTOK	RATED	ACTUAL
MOTOR PULLEY		Fan Motor Horsepower	5	4.03
DIAMETER	4 in	Fan Motor RPM	1750	1726
SHAFT	0.5 in	Fan Motor Voltage	230	228
FIXED / ADJ	Adjustable	Fan Motor Amperage	13.2	8.1
BELT NO. & SIZE	BX-58	Fan Service Factor	1.15	1.15 =
FAN PULLEY		Fan RPM	unknown	230 7
DIAMETER	30 in	TEMPERATURES	DESIGN	ACTUAL
SHAFT	1 in	Entering Air Temperature	NA	NA
•				

MOTOR PULLEY	\frown	Fan Motor Horsepower	1	1
DIAMETER	4 in 🖉	Fan Motor RPM	1725	1726
SHAFT	1 in	Fan Motor Voltage	115	110
FIXED / ADJ	Adjustable	Fan Motor Amperage	13.2	8.1
BELT NO. & SIZE	A92-4L-940	Fan Service Factor	1.1.0	1.15
FAN PULLEY	\frown	Fan RPM		(383)
DIAMETER (18 in 🔵	TEMPERATURES	DESIGN	ACTUAL

MODEL	2207	TARMOTOR		NOTONE
MOTOR PULLEY		Fan Motor Horsepower	0.5	0.5
DIAMETER	(4 in)	Fan Motor RPM	1725 🤇	1726
SHAFT	1 in	Fan Motor Voltage	115	110
FIXED / ADJ	Adjustable	Fan Motor Amperage	8.1	6.2
BELT NO. & SIZE	4L-690	Fan Service Factor	unknown	unknown
FAN PULLEY		Fan RPM	unknown	493
DIAMETER	(14 in)	TEMPERATURES	DESIGN	ACTUAL
CUACT	1 1 1 2	Enterine Air Temperature	NIA	NIA

It's highly unlikely that EXACTLY 1726 was read as actual motor RPMs on all 3 fans.

It's extremely improbable that ANY of the actual fan RPMs were the calculated maximum.

It's statistically impossible for the actual fan RPMs to come out to EXACTLY the calculated maximum fan RPM 3 times in a row.

Here we have an RTU where the grilles were read out at 168% of design cfm.

Duct traverse of RTU indicated total supply airflow of 170% of design cfm.

UNIT DATA			
Manufacturer LENNOX			
Model Number	LGH120HHBM3G		
Unit Type	RTU		
Sheave Size	5.6		
Sheave Bore Size	1		
Belt Make & Size	BROWNING / AX5	5	
No. Filters, Type, Size	4/PLEATED/20X25X	(2	

MOTOR DATA			
Manufacturer/Frame	INTERLINK /56HZ		
Motor H.P.	2		
Volts / Phase / Cycle	460/3/60		
Full Load Amps	2.9		
Motor RPM	1755		
Sheave Size & Bore	4.8 X 7/8		
Sheave Position	3 TURNS OPEN		
Sheave Centers' Distance	21.75		

TEST DATA	DESIGN		ACTUAL	
Design CFM	3500		6058	
Air Distribution Total	3500	$\overline{\ }$	6058	
Fan RPM				
Fan RPM			12	36
Discharge S.P.			0.2	23
Suction S.P.			0.9	96
Total S.P.			1.1	19
External S.P.	.80"wg		0.6	64

TEST DATA	DESIGN	ACTUAL
Motor RPM		
Motor BHP		3.05
Volts T1-T2	460	484
Volts T2-T3	460	483
Volts T1-T2	460	480
Amps T1	2.9	4
Amps T2	2.9	4.1
Amps T3	2.9	3.9

Here we have an RTU where the grilles were read out at 168% of design cfm.

Duct traverse of RTU indicated total supply airflow of 170% of design cfm.

UNIT DATA			
Manufacturer LENNOX			
Model Number	LGH120HHBM3G		
Unit Type	RTU		
Sheave Size	5.6		
Sheave Bore Size	1		
Belt Make & Size	BROWNING / AX55		
No. Filters, Type, Size	4/PLEATED/20X25X2		

TEST DATA	DESIGN	ACTUAL
Design CFM	3500	6058
Air Distribution Total	3500	6058
Fan RPM		
Fan RPM		1236
Discharge S.P.		0.23
Suction S.P.		0.96
Total S.P.		1.19
External S.P.	.80"wg	0.64

MOTOR DATA			
Manufacturer/Frame	INTERLINK /56HZ		
Motor H.P.	2		
Volts / Phase / Cycle	460/3/60		
Full Load Amps	2.9		
Motor RPM	1755		
Sheave Size & Bore	4.8 X 7/8		
Sheave Position	3 TURNS OPEN		
Sheave Centers' Distance	21.75		

TEST DATA	DESIGN	ACTUAL
Motor RPM		
Motor BHP		3.05
Volts T1-T2	460	484
Volts T2-T3	460	483
Volts T1-T2	460	480
Amps T1	2.9	4
Amps T2	2.9	4.1
Amps T3	2.9	3.9

Note that the unit is over-amping, which supports the readings indicating airflow higher than design.

	JNIT DATA
Manufacturer	LENNOX
Model Number	LGH120HHBM3G
Unit Type	RTU
Sheave Size	5.6
Sheave Bore Size	1
Belt Make & Size	BROWNING / AX55
No. Filters, Type, Size	4/PLEATED/20X25X2

TEST DATA	DESIGN	ACTUAL
Design CFM	3500	6058
Air Distribution Total	3500	6058
Fan RPM		
Fan RPM		1236
Discharge S.P.		0.23
Suction S.P.		0.96
Total S.P.		1.19
External S.P.	.80"wg	0.64

MOTOR	DATA
Manufacturer/Frame	INTERLINK /56HZ
Motor H.P.	2
Volts / Phase / Cycle	460/3/60
Full Load Amps	2.9
Motor RPM	1755
Sheave Size & Bore	4.8 X 7/8
Sheave Position	3 TURNS OPEN
Sheave Centers' Distance	21.75

TEST DATA	DESIGN	ACTUAL
Motor RPM		
Motor BHP		3.05
Volts T1-T2	460	484
Volts T2-T3	460	483
Volts T1-T2	460	480
Amps T1	2.9	4
Amps T2	2.9	4.1
Amps T3	2.9	3.9

Also note, the missing design data.

Again, this is why submittal data is critical for successful completion of TAB.

(JNIT DATA
Manufacturer	LENNOX
Model Number	LGH120HHBM3G
Unit Type	RTU
Sheave Size	5.6
Sheave Bore Size	1
Belt Make & Size	BROWNING / AX55
No. Filters, Type, Size	4/PLEATED/20X25X2

MOTOR	DATA
Manufacturer/Frame	INTERLINK /56HZ
Motor H.P.	2
Volts / Phase / Cycle	460/3/60
Full Load Amps	2.9
Motor RPM	1755
Sheave Size & Bore	4.8 X 7/8
Sheave Position	3 TURNS OPEN
Sheave Centers' Distance	21.75

TEST DATA	DESIGN	ACTUAL
Design CFM	3500	6058
Air Distribution Total	3500	6058
Fan RPM		
Fan RPM		1236
Discharge S.P.		0.23
Suction S.P.		0.96
Total S.P.		1.19
External S.P.	. 80"w g	0.64

TEST DATA	DESIGN	ACTUAL
Motor RPM		
Motor BHP		3.05
Volts T1-T2	460	484
Volts T2-T3	460	483
Volts T1-T2	460	480
Amps T1	2.9	4
Amps T2	2.9	4.1
Amps T3	2.9	3.9

SUPPLY FAN PERFORMANCE

Supply AirFlow	3500 (cfm)	TotalStaticPress		1.23 (in.WC)
Outdoor AirFlow	500 (cfm)	Wei TEST DATA	DESIGN	ACTUAL
ExtStaticPress Supply	0.80 (in.WC)	Gas TEST DATA	DESIGN	ACTUAL
SupplyFan Req'dPower	1.88 (hp)	_{Eco} Design CFM	3500	6058
SupplyFan NomPower	2.00 (hp)	Air Air Distribution Total	3500	6058
Supply Fan Type	CAV Belt Drive	Air Fan RPM		
SupplyDriveReq'd RPM	908 (rpm)	Air Fan RPM		1236
SupplyDrive Min RPM	800 (rpm)	Air Filter Thickness		2.0 (in.)
SupplyDrive Max RPM	1105 (rpm)	Number Exhaust Fans		1

SUPPLY FAN PERFORMANCE

Supply AirFlow Outdoor AirFlow ExtStaticPress Supply SupplyFan Req'dPower SupplyFan NomPower SupplyFan Type SupplyDriveReq'd RPM SupplyDrive Min RPM SupplyDrive Max RPM

3500 (cfm)	
500 (cfm)	
0.80 (in.WC)	
1.88 (hp)	
2.00 (hp)	
CAV Belt Drive	
908 (rpm)	
800 (rpm)	
1105 (rpm)	

TotalStaticPress	1.23 (in.WC)
Wet Coil Static Press	0.12 (in.WC)
Gas H/E Static Press	0.16 (in.WC)
Economizer Static Press	0.15 (in.WC)
Air Filter Qty	4
Air Filter Length	20.0 (in.)
Air Filter Width	25.0 (in.)
Air Filter Thickness	2.0 (in.)
Number Exhaust Fans	1

	UNIT DATA
Manufacturer	LENNOX
Model Number	LGH120HHBM3G
Unit Type	RTU
Sheave Size	5.6
Sheave Bore Size	1
Belt Make & Size	BROWNING / AX55
No. Filters, Type, Size	4/PLEATED/20X25X2

MOTOR	DATA
Manufacturer/Frame	INTERLINK /56HZ
Motor H.P.	2
Volts / Phase / Cycle	460/3/60
Full Load Amps	2.9
Motor RPM	1755
Sheave Size & Bore	4.8 X 7/8
Sheave Position	3 TURNS OPEN
Sheave Centers' Distance	21.75

TEST DATA	DESIGN	ACTUAL
Design CFM	3500	6058
Air Distribution Total	3500	6058
Fan RPM		
Fan RPM		1236
Discharge S.P.		0.23
Suction S.P.		0.96
Total S.P.		1.19
External S.P.	.80"wg	0.64

TEST DATA	DESIGN	ACTUAL
Motor RPM		
Motor BHP		3.05
Volts T1-T2	460	484
Volts T2-T3	460	483
Volts T1-T2	460	480
Amps T1	2.9	4
Amps T2	2.9	4.1
Amps T3	2.9	3.9

Grilles were read at 167% of design cfm; Unit was traversed at 173%

Actual rpm exceed design fan rpm by 136%

Actual fan rpm exceed design max fan rpm by 120%

Actual fan max rpm $(4.8 / 5.6) \times 1755 = 1504$ package max fan rpm with installed drive package vs. submittal 1105 max fan rpm.

Unit was over amping in operation.

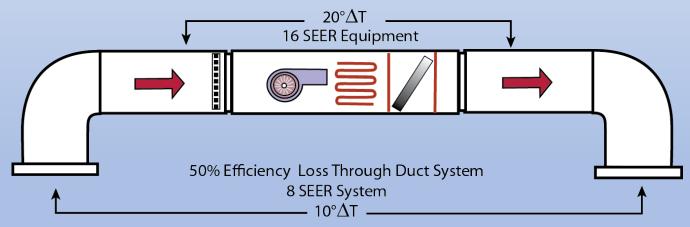
Conclusion - wrong drive package was installed on unit.

l	JNIT DATA	
Manufacturer	LENNOX	
Model Number	LGH120HHBM3G	
Unit Type	RTU	
Sheave Size	5.6	
Sheave Bore Size	1	
Belt Make & Size	BROWNING / AX5	5
No. Filters, Type, Size	4/PLEATED/20X25>	K2

MOTOR	DATA
Manufacturer/Frame	INTERLINK /56HZ
Motor H.P.	2
Volts / Phase / Cycle	460/3/60
Full Load Amps	2.9
Motor RPM	1755
Sheave Size & Bore	4.8 X 7/8
Sheave Position	3 TURNS OPEN
Sheave Centers' Distance	21.75

TEST DATA	DESIGN	ACTUAL
Design CFM	3500	6058
Air Distribution Total	3500	6058
Fan RPM		
Fan RPM		1236
Discharge S.P.		0.23
Suction S.P.		0.96
Total S.P.		1.19
External S.P.	.80"wg	0.64

TEST DATA	DESIGN	ACTUAL
Motor RPM		
Motor BHP		3.05
Volts T1-T2	460	484
Volts T2-T3	460	483
Volts T1-T2	460	480
Amps T1	2.9	4
Amps T2	2.9	4.1
Amps T3	2.9	3.9



Airflow and Delta - T

Standard Delta-T on a DX unit is 20°, at 400 cfm per ton of air conditioning, at 12,000 Btus.

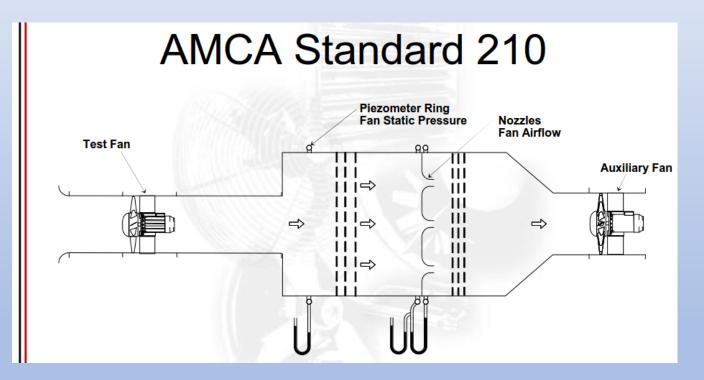
If a TAB report states That a 5 ton DX RTU is moving 1,000 cfm, yet the TAB report shows a 20° split, and coils aren't frozen, there is something wrong with the data.

All too often, a unit will be under-performing or over performing, and either the manufacturer or design team will IMMEDIATELY PLOT the field data on a fan curve and respond with a statement to the effect:

"Your Data is Wrong!"

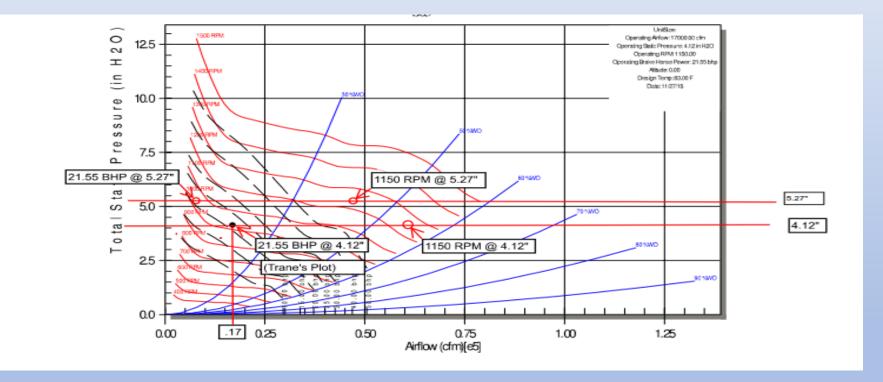
I was even teaching at a manufacturer's location once, and I asked, "why is it that the TAB recorded data never exactly lines up with the fan curve?"

And before I could put a period on that sentence, one of the design engineers literally came out of his seat and stated...


- ... "Because your data is wrong!"
- And all of their field personnel knew better.
- Fan Curves are developed under laboratory conditions, under AMCA Standard 210.
- Once the system is installed, in the field, multiple factors change.

Theory.....

vs. Reality...


- Fan Curves DO NOT take into account System Effect, caused by installation conditions.
- Fan curves are still very practical in regard to TAB report review, as they provide logical parameters.
- Once installed, the fan curves / fan tables NEVER line up exactly, due to field and installation conditions.
- How was BHP determined? Was it read or calculated? Was motor tag Eff and PF used or were plug values used? If so, which one? .8 and .9? 8. and .85? .8 and .7?

Fan Curves / Tables provide Logical Parameters, IF the correct information is given.

6,000 CFM @ 1.2" SP, 857 Fan RPM, 3.89 BHP.

J15XP (15 Ton) Side Duct

									Ava	ailable	Exter	mal St	tatic P	ressu	re - IV	VG ¹			_		_		_	
Air Flow (CFM)	0.	.4	0.6		0.8		1.0		(1	(1.2)		1.4		1.6		8	2.0		2.2		2.4		2.6	
(Crm)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	Stand	ard 5 I	HP&F	ield Su	pplied	Drive				⁻ Stan	dard 5	HP & I	Drive						High S	tatic 7	5 HP 8	& Drive		
4000	626	0.22	659	0.66	695	1.07	731	1.45	769	1.81	807	2.16	845	2.49	882	2.81	917	3.12	951	3.43	983	3.74	1011	4.05
4400	641	0.56	674	0.99	709	1.40	746	1.78	784	2.15	822	2.49	860	2.82	897	3.14	932	3.46	966	3.77	998	4.08	1026	4.39
4800	657	0.93	690	1.37	725	1.78	762	2.16	800	2.52	838	2.87	876	3.20	913	3.52	948	3.83	982	4.14	1014	4.45	1042	4.76
5200	674	1.35	708	1.78	743	2.19	780	2.58	817	2.94	855	3.28	893	3.61	930	3.94	966	4.25	1000	4.56	1031	4.87	1059	5.18
5600	693	1.81	726	2.24	762	2.65	798	3.03	836	3,40	874	3.74	912	4.07	949	4.39	985	4.71	1018	5.02	1050	5.33	1078	5.64
6000	714	2.30	747	2.74	782	3.15	819	3.53	857	3.89	895	4.24	932	4.57	969	4.89	1005	5.21	1039	5.51	1070	5.82	1099	6.14
6400	736	2.84	769	3.28	804	3.69	841	4.07	879	4.43	917	4.78	954	5.11	991	5.43	1027	5.74	1061	6.05	1092	6.36	1121	6.67
6800	759	3.42	792	3.85	828	4.26	865	4.65	902	5.01	940	5.35	978	5.68	1015	6.01	1051	6.32	1084	6.63	1116	6.94	1144	7.25
7200	784	4.03	818	4.47	853	4.87	890	5.26	927	5.62	965	5.97	1003	6.30	1040	6.62	1076	6.93	1110	7.24	1141	7.55	-	-
7600	811	4.68	844	5.11	880	5.52	916	5.90	954	6.27	992	6.61	1030	6.94	1067	7.26	1103	7.58	-	-	-	-	-	-
															-		1		7.	5 HP (& Field	Suppli	ed Driv	ve

1. Blower performance includes 2* filters only. See STATIC RESISTANCE table for additional applications.

2. See RPM SELECTION table to determine required motor sheave setting.

kW = BHP x 0.834.

Engineering Data Courtesy of Carrier Corp.

Again, theory vs. reality.... Field readings of 1.48" SP, 886 Fan RPM, 3.51 BHP

J15XP (15 Ton) Side Duct

									Ava	ailable	Exter	mal St	tatic P	ressu	re - IV	VG ¹								
Air Flow (CFM)	0.4		0.6		0.8		1.0		1.2		1	(1.4)		1.6		1.8		2.0		2.2		2.4		.6
(01 m)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP					_	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	Stand	ard 5 H	HP & F	ield Su	pplied	Drive				⁻ Stan	dard 5	HP & I	Drive						High S	tatic 7	5 HP 8	& Drive		
4000	626	0.22	659	0.66	695	1.07	731	1.45	769	1.81	807	2.16	845	2.49	882	2.81	917	3.12	951	3.43	983	3.74	1011	4.05
4400	641	0.56	674	0.99	709	1.40	746	1.78	784	2.15	822	2.49	860	2.82	897	3.14	932	3.46	966	3.77	998	4.08	1026	4.39
4800	657	0.93	690	1.37	725	1.78	762	2.16	800	2.52	838	2.87	876	3.20	913	3.52	948	3.83	982	4.14	1014	4.45	1042	4.76
5200	674	1.35	708	1.78	743	2.19	780	2.58	817	2.94	855	3.28	893	3.61	930	3.94	966	4.25	1000	4.56	1031	4.87	1059	5.18
5600	693	1.81	726	2.24	762	2.65	798	3.03	836	3.40	874	3.74	912	4.07	949	4.39	985	4.71	1018	5.02	1050	5.33	1078	5.64
6000	714	2.30	747	2.74	782	3.15	819	3.53	857	3.81	895	4.24	932	4.57	969	4.89	1005	5.21	1039	5.51	1070	5.82	1099	6.14
6400	736	2.84	769	3.28	804	3.69	841	4.07	879	4.43	917	4.78	954	5.11	991	5.43	1027	5.74	1061	6.05	1092	6.36	1121	6.67
6800	759	3.42	792	3.85	828	4.26	865	4.65	902	5.01	940	5.35	978	5.68	1015	6.01	1051	6.32	1084	6.63	1116	6.94	1144	7.25
7200	784	4.03	818	4.47	853	4.87	890	5.26	927	5.62	965	5.97	1003	6.30	1040	6.62	1076	6.93	1110	7.24	1141	7.55	-	-
7600	811	4.68	844	5.11	880	5.52	916	5.90	954	6.27	992	6.61	1030	6.94	1067	7.26	1103	7.58	-	-	-	-	-	-
					[-		1		7.	5 HP 8	& Field	Suppli	ed Driv	/e

1. Blower performance includes 2" filters only. See STATIC RESISTANCE table for additional applications.

2. See RPM SELECTION table to determine required motor sheave setting.

3. kW = BHP x 0.834.

Engineering Data Courtesy of Carrier Corp.

Again, theory vs. reality.... 1.48" SP, 886 Fan RPM, 3.51 BHP

J15XP (15 Ton) Side Duct

									Ava	ailable	Exter	mal St	tatic P	ressu	ire - IV	VG ¹								
Air Flow (CFM)	0	.4	0	.6	0.	.8	1.	.0	1	.2	(1	<u> </u>	1.	.6	1.	8	2	.0	2	.2	2	.4	2	.6
(0111)	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	_	BHP	_			BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
	Stand	ard 5 I	HP&F	ield Su	pplied	Drive				¹ Stan	dard 5	HP & I	Drive						High S	tatic 7	5 HP 8	& Drive		
4000	626	0.22	659	0.66	695	1.07	731	1.45	769	1.81	807	2.16	845	2.49	882	2.81	917	3.12	951	3.43	983	3.74	1011	4.05
4400	641	0.56	674	0.99	709	1.40	746	1.78	784	2.15	822	2.49	860	2.82	897	3.14	932	3.46	966	3.77	998	4.08	1026	4.39
4800	657	0.93	690	1.37	725	1.78	762	2.16	800	2.52	838	2.87	876	3.20	913	3.52	948	3.83	982	4.14	1014	4.45	1042	4.76
5200	674	1.35	708	1.78	743	2.19	780	2.58	817	2.94	855	3.28	893	3.61	930	3.94	966	4.25	1000	4.56	1031	4.87	1059	5.18
5600	693	1.81	726	2.24	762	2.65	798	3.03	836	3.40	874	3.74	912	4.07	949	4.39	985	4.71	1018	5.02	1050	5.33	1078	5.64
6000	714	2.30	747	2.74	782	3.15	819	3.53	857	3.81	895	4.24	932	4.57	969	4.89	1005	5.21	1039	5.51	1070	5.82	1099	6.14
6400	736	2.84	769	3.28	804	3.69	841	4.07	879	4.43	917	4.78	954	5.11	991	5.43	1027	5.74	1061	6.05	1092	6.36	1121	6.67
6800	759	3.42	792	3.85	828	4.26	865	4.65	902	5.01	940	5.35	978	5.68	1015	6.01	1051	6.32	1084	6.63	1116	6.94	1144	7.25
7200	784	4.03	818	4.47	853	4.87	890	5.26	927	5.62	965	5.97	1003	6.30	1040	6.62	1076	6.93	1110	7.24	1141	7.55	-	-
7600	811	4.68	844	5.11	880	5.52	916	5.90	954	6.27	992	6.61	1030	6.94	1067	7.26	1103	7.58	-	-	-	-	-	-
					[-		-		•		-		1		7.	5 HP (& Field	Suppli	ed Driv	ve

1. Blower performance includes 2" filters only. See STATIC RESISTANCE table for additional applications.

2. See RPM SELECTION table to determine required motor sheave setting.

3. kW = BHP x 0.834.

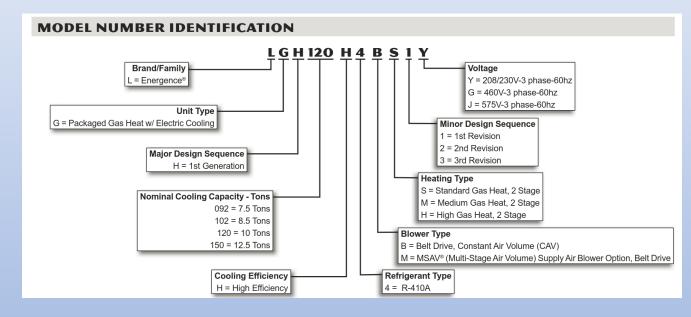
Engineering Data Courtesy of Carrier Corp.

Fan Curves / Tables provide Logical Parameters, IF the correct information is given.

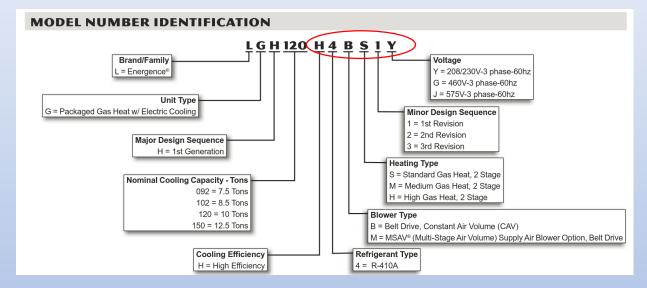
The TAB professional and Certified Supervisor, needs to know they CAN NOT rely upon a fan curve for "Verified Airflow", due to field conditions and factors in the field.

The TAB professional MUST be aware that the AHJ, Design team and /or manufacturer is IMMEDIATELY going to apply the fan curve.

The Design Team, manufacturer, etc. need to be aware of System Effect, field installation conditions, and BTW, what formula did you us / what method did you use to calculate BHP?


The final TAB Report MUST include enough data for the TAB Supervisor, Equipment manufacture, Commissioning Agent, Design Team or other interested Parties

Checking Report Unit Data Against Submittals


	JUD: UAFURD GRAND					
UNIT	RTU# 1	RTU# 2				
UNIT MFG	LENNOX	LENNOX				
MODEL NO.	LGH102H4B	LGH072H4B				
SERIAL NO.	5616A00537	5616A01455				

Checking Report Unit Data Against Submittals

	JUD: UAFURD GRAND						
UNIT		RTU# 1	RTU# 2				
UNIT N	ИFG	LENNOX	LENNOX				
MODE	L NO.	LGH102H4B	LGH072H4B				
SERIA	L NO.	5616A00537	5616A01455				

TAB did not obtain full model number for complete evaluation

January 1st

	MUA 1						
HOOD NA		SYSTEM AIRFLOW	DESIC	ACTUAL			
FAN MFC	FRIDGE KING	Exhaust					
MODEL	6500DD	MUA	3325	3228			
SERIAL		Outside Air CFM					
TYPE	RTU	SYSTEM PRESSURES	- Constantion	ACTUAL			
SIZE		Total External Static Pressure		0.38			
LOCATIO	RTU						
FAN MO	TOR						
MFG	Max Motion	FAN MOTOR		ACTUAL			
	EM3218T	Fan Motor Horsepower	3/4HP	3/4HP			
MOTOR	PULLEY	Fan Motor RPM	1725	1727			
DIAMETE		Fan Motor Voltage	115	115			
SHAFT	1/2IN	Fan Motor Amperage	8.1	6.1			
FIXED/AD	Adj	Fan Service Factor	1.2	1.2			
BELT NO		Fan RPM		425			
FAN PUI	5.25IN	Hood	-	ACTUAL			
DIAMETE		Hood vent dimensions Sq Ft					
SHAFT	5/8"	Velocity FPM					
FIXED/AD	THE R. LEWIS CO., LANSING MICH.	Kitchen Pressure in WC		0.2			
BELT NO	1456	Filter Grill size in Sq Ft.					

February 1st

	MUA 1							
HOOD NAME		SYSTEM AIRFLOW	DESIC	ACTUAL				
FAN MF(FRI	DGE KING	Exhaust						
MODEL 490	0DD	MUA	2900	2854				
SERIAL		Outside Air CFM						
TYPE RTU		SYSTEM PRESSURES		ACTUAL				
SIZE		Total External Static Pressure		0.38				
LOCATIO RTU)							
FAN MOTO	R							
MFG Max	Motion	FAN MOTOR	-	ACTUAL				
MODEL EM3		Fan Motor Horsepower	3/4HP	3/4HP				
MOTOR PUL	LEY	Fan Motor RPM	1725	1727				
DIAMETER		Fan Motor Voltage	115	115				
SHAFT	1/2IN	Fan Motor Amperage	8.1	7.9				
FIXED/AD	Adj	Fan Service Factor	1.2	1.2				
BELT NO	1456	Fan RPM		812				
FAN PUI	5.25IN	Hood		ACTUAL				
DIAMETE	2/28IN	Hood vent dimensions Sq Ft						
SHAFT	5/8"	Velocity FPM						
FIXED/AD	Fixed	Kitchen Pressure in WC		0.2				
BELT NO	1456	Filter Grill size in Sq Ft.						

			MUA 1		
HOOD NA	ME		SYSTEM AIRFLOW	DESIGN	ACTUAL
FAN MFC	CAPTIVE	AIRE	Exhaust		
MODEL	A1G10		MUA	1025	1069
SERIAL			Outside Air CFM		
TYPE	RTU		SYSTEM PRESSURE		ACTUAL
SIZE			Total External Static P		0.38
LOCATIO	RTU				
FAN MC	TOR				
MFG	Max Motio	on	FAN MOTOR		ACTUAL
	EM3218T	'	Fan Motor Horsepowe	1HP	1HP
MOTOR	PULLEY		Fan Motor RPM	1725	1727
DIAMETE			Fan Motor Voltage	115	115
SHAFT	1/:	2IN	Fan Motor Amperage	8.1	6.8
FIXED/AD		dj	Fan Service Factor	1.2	1.2
BELT NO		56	Fan RPM		514
FAN PU		5IN	Hood		ACTUAL
DIAMETE		8IN	Hood vent dimensions		
SHAFT	5/	8"	Velocity FPM		
FIXED/AD	Fib	ked	Kitchen Pressure in W		0.2
BELT NO	14	56	Filter Grill size in Sq F		

January 1st

February 1st

		MUA 1		
HOOD NA		SYSTEM AIRFLOW	DESIC	ACTUAL
FAN MFO	FRIDGE KING	Exhaust		
MODEL	6500DD	MUA	3325	3228
SERIAL	\sim	Outside Air CFM		
TYPE	RTU	SYSTEM PRESSURES		ACTUAL
SIZE		Total External Static Pressure		0.38
LOCATIO	RTU			
FAN MO	DTOR			
MFG	Max Motion	FAN MOTOR		ACTUAL
	EM3218T	Fan Motor Horsepower	3/4HP	3/4HP
MOTOR	PULLEY	Fan Motor RPM	1725	1727
DIAMETE		Fan Motor Voltage	115	115
SHAFT	1/2IN	Fan Motor Amperage	8.1	6.1
FIXED/AD		Fan Service Factor	1.2	1.2
BELT NO		Fan RPM		425
FAN PUL		Hood		ACTUAL
DIAMETE		Hood vent dimensions Sq Ft		
SHAFT	5/8"	Velocity FPM		
FIXED/AD	Fixed	Kitchen Pressure in WC		(0.2)
BELT NO	1456	Filter Grill size in Sq Ft.		\bigcirc

AL.
Ļ
5
フ
_
NL
Þ
5
5
N.
~
1

			MUA 1		
HOOD NA	ME			DESIGN	ACTUAL
FAN MF	CAPTIVE	AIRE	Exhaust		
	A1G10		MUA	1025	1069
SERIAL			Outside Air CFM		
TYPE	RTU		SYSTEM PRESSURE		ACTUAL
SIZE			Total External Static F		0.38
LOCATIO	RTU				
FAN MO	TOR	-			
MFG	Max Motio	on 🗧	FAN MOTOR		ACTUAL
MODEL	EM3218T	\mathcal{I}	Fan Motor Horsepowe	1HP	1HP
MOTOR	PULLEY		Fan Motor RPM	1725	(1727)
DIAMETE			Fan Motor Voltage	115	115
SHAFT	1/2	2IN	Fan Motor Amperage	8.1	6.8
FIXED/AD		dj	Fan Service Factor	1.2	1.2
BELT NO		56	Fan RPM		514
FAN PUL		5IN	Hood		ACTUAL
DIAMETE		8IN	Hood vent dimensions		
SHAFT		8"	Velocity FPM		\bigcirc
FIXED/AD		ked	Kitchen Pressure in W		0.2
BELT NO	14	56	Filter Grill size in Sq F		

January 1st

Fe	brι	lary	′ 1	st

	an Maana ay Maana	MUA 1	epetoritari	
HOOD NA		SYSTEM AIRFLOW	DESIC	ACTUAL
FAN MF	FRIDGE KING	Exhaust		
MODEL	6500DD	MUA	3325	3228
SERIAL	\sim	Outside Air CFM		
TYPE	RTU	SYSTEM PRESSURES		ACTUAL
SIZE		Total External Static Pressure		0.38
LOCATIO	RTU			
FAN MC	DTOR			
	Max Motion	FAN MOTOR		ACTUAL
	EM3218T	Fan Motor Horsepower	3/4HP	3/4HP
MOTOR	PULLEY	Fan Motor RPM	1725	1727
DIAMETE		Fan Motor Voltage	115	115
SHAFT	1/2IN	Fan Motor Amperage	8.1	6.1
FIXED/AD		Fan Service Factor	1.2	1.2
BELT NO		Fan RPM		425
FAN PU		Hood		ACTUAL
DIAMETE		Hood vent dimensions Sq Ft		
SHAFT	5/8")	Velocity FPM		
FIXED/AD		Kitchen Pressure in WC		(0.2)
BELT NO	1456	Filter Grill size in Sq Ft.		\bigcirc

MUA 1							
HOOD N/		SYSTEM AIRFLOW	DESIC	ACTUAL			
FAN MFC	FRIDGE KING	Exhaust					
MODEL	4900DD	MUA	2900	2854			
SERIAL		Outside Air CFM					
TYPE	RTU	SYSTEM PRESSURES		ACTUAL			
SIZE	,	Total External Static Pressure		0.38			
LOCATIO	RTU						
FAN MO	DTOR						
MFG	Max Motion	FAN MOTOR		ACTUAL			
	EM3218T	Fan Motor Horsepower	3/4HP	3/4HP			
MOTOR	PULLEY	Fan Motor RPM	1725	1727			
DIAMETE		Fan Motor Voltage	115	115			
SHAFT	1/2IN	Fan Motor Amperage	8.1	7.9			
FIXED/AD	Adj	Fan Service Factor	1.2	(1.2)			
BELT NO		Fan RPM		812			
FAN PU	5.25IN	Hood		ACTUAL			
DIAMETE		Hood vent dimensions Sq Ft					
SHAFT	5/8"	Velocity FPM					
FIXED/AD		Kitchen Pressure in WC		0.2			
BELT NO	1456	Filter Grill size in Sq Ft.					

		MUA 1		
HOOD NA	ME	SYSTEM AIRFLOW	DESIGN	ACTUAL
FAN MFC	CAPTIVEAIRE	Exhaust		
MODEL	A1G10	MUA	1025	1069
SERIAL		Outside Air CFM		
TYPE	RTU	SYSTEM PRESSURE		ACTUAL
SIZE		Total External Static F		0.38
LOCATIO	RTU			
FAN MC	TOR			
MFG	Max Motion	FAN MOTOR		ACTUAL
MODEL	EM3218T	Fan Motor Horsepowe	1HP	1HP
MOTOR	PULLEY	Fan Motor RPM	1725	(1727)
DIAMETE		Fan Motor Voltage	115	115
SHAFT	1/2IN	Fan Motor Amperage	8.1	6.8
FIXED/AD		Fan Service Factor	1.2	1.2
BELT NO		Fan RPM		514
FAN PUL		Hood		ACTUAL
DIAMETE	2/28IN	Hood vent dimensions		
SHAFT	5/8"	Velocity FPM		$\overline{)}$
FIXED/AD	Fixed	Kitchen Pressure in W		0.2
BELT NO	1456	Filter Grill size in Sq F		
			in the last sectors of	

February 1st

January 1st

	,	MUA 1	a principal a series	
HOOD NA		SYSTEM AIRFLOW	DESIC	ACTUAL
FAN MFQ	FRIDGE KING	Exhaust		
MODEL	6500DD	MUA	3325	3228
SERIAL	\smile	Outside Air CFM		
TYPE	RTU	SYSTEM PRESSURES		ACTUAL
SIZE		Total External Static Pressure		0.38
LOCATIO	RTU			
FAN MO	TOR			
MFG	Max Motion	FAN MOTOR		ACTUAL
MODEL	EM3218T	Fan Motor Horsepower	3/4HP	3/4HP
MOTOR	PULLEY	Fan Motor RPM	1725	1727
DIAMETE	R	Fan Motor Voltage	115	115
SHAFT	1/2IN	Fan Motor Amperage	8.1	6.1
FIXED/AD	Adj	Fan Service Factor	1.2	1.2
BELT NO		Fan RPM		425
FAN PUL	5.25IN 早	Hood	a second to	ACTUAL
DIAMETE	2/28IN	Hood vent dimensions Sq Ft		
SHAFT	5/8")	Velocity FPM		
FIXED/AD	Fixed	Kitchen Pressure in WC		(0.2)
BELT NO	1456	Filter Grill size in Sq Ft.		\sim

MUA 1											
HOOD NA		SYSTEM AIRFLOW	DESIC	ACTUAL							
FAN MFC	FRIDGE KING	Exhaust		THE ACTUAL COME.							
MODEL	4900DD	MUA	2900	2854							
SERIAL		Outside Air CFM									
TYPE	RTU _	SYSTEM PRESSURES		ACTURE							
SIZE		Total External Static Pressure		0.38							
LOCATIO	RTU			\sim							
FAN MO	DTOR										
MFG	Max Motion	FAN MOTOR		ACTUAL							
	EM3218T	Fan Motor Horsepower	3/4HP	3/4HP							
MOTOR	PULLEY	Fan Motor RPM	1725	1727							
DIAMETE	R	Fan Motor Voltage	115	115							
SHAFT	1/2IN	Fan Motor Amperage	8.1	7.9							
FIXED/AD	Adj	Fan Service Factor	1.2	(1.2)							
BELT NO		Fan RPM		812							
FAN PUL	5.25IN	Hood		ACTUAL							
DIAMETE	2/28IN	Hood vent dimensions Sq Ft									
SHAFT	5/8"	Velocity FPM									
FIXED/AD	Fixed	Kitchen Pressure in WC		0.2							
BELT NO	1456	Filter Grill size in Sq Ft.									

-				
		MUA 1		
HOOD NA	ME	SYSTEM AIRFLOW	DESIGN	ACTUAL
FAN MFC	CAPTIVEAIRE	Exhaust		
MODEL	A1G10	MUA	1025	1069
SERIAL		Outside Air CFM		
TYPE	RTU	SYSTEM PRESSURE		ACTUAL
SIZE		Total External Static F		0.38
LOCATIO	RTU			
FAN MC	TOR			
	Max Motion 🖓	FAN MOTOR		ACTUAL
	EM3218T	Fan Motor Horsepowe	1HP	1HP
MOTOR	PULLEY	Fan Motor RPM	1725	1727
DIAMETE		Fan Motor Voltage	115	
SHAFT	1/2IN	Fan Motor Amperage	8.1	
FIXED/AD		Fan Service Factor	1.2	1.2
BELT NO		Fan RPM		514
FAN PU		Hood		ACTUAL
DIAMETE		Hood vent dimensions		
SHAFT	5/8"	Velocity FPM		\frown
FIXED/AD		Kitchen Pressure in W		0.2
BELT NO	1456	Filter Grill size in Sq F		

			MUA 1		
HOOD NAME	HOOD NAME	HOOD NAME	SYSTEM AIRFLOW	DESIGN	ACTUAL
FAN MEGERIDGI	FAN ME	FAN MECAPTIVEAIRE	Exhaust		
MODEL 6500DE	MODEL 4900DD	MODEL A1G10	MUA	1025	1069
SERIAL	SERIAL	SERIAL	Outside Air CFM		
TYPE RTU	TYPE RTU	TYPE RTU	SYSTEM PRESSURE		ACTUAL
SIZE	SIZE	SIZE	Total External Static F	-	0.38
OCATIO RTU	LOCATIO	LOCATIO RTU			
FAN MOTOR	FAN MOTOR	FAN MOTOR			
MFG Max Mo	MFG Max Motion		FAN MOTOR		ACTUAL
MODEL EM321	MODEL EM3218T	MODEL EM3218T	Fan Motor Horsepowe		1HP
MOTOR PULLE	MOTOR PULLEY		Fan Motor RPM	1725	(1727
DIAMETER	DIAMETER			1 4461	115
SHAFT	SHAFT 1/	Baldor EM3	2181		
FIXED/AD	FIXED/AD A				
BELT NO	BELT NO 14 FAN PUL 5.2			Cat	full c
FAN PUL 5	DIAMETE 2/2			Get	full s
	SHAFT 5	0		•	
	FIXED/AD Fix		422	Ger	neral De
	BELT NO 14		213		
BELT NO			- = =	6-	tagane
				Ca	tegory: (
				KV	V : 3.73
					

🖪 Drawing

Maxmotion EM3218T

Get full specifications on Baldor EM3218T General Purpose

General Details		
Category: General Purpose	Product Line: Super – E	HP: 5
KW : 3.73	RPM : 1800	Voltage: 230/460
Enclosure: ODP	Frame: 184T	Motor Standards: NEMA

	¢	0					MUA 1		
HOOD NA	AME	HOOD N/	ME	HOOD N/	AME		SYSTEM AIRFLOW	DESIGN	ACTUAL
FAN MFC	FRIDGE KIN	FAN MFG	FRIDGE KI	FAN MFG	CAPTIVEA	IRE	Exhaust		
MODEL	6500DD	MODEL	4900DD	MODEL	A1G10		MUA	1025	1069
SERIAL	\sim	SERIAL		SERIAL			Outside Air CFM		
TYPE	RTU	TYPE	RTU	TYPE	RTU		SYSTEM PRESSURE		ACTUAL
SIZE		SIZE		SIZE			Total External Static F		0.38
LOCATIO	RTU	LOCATIC	RTU	LOCATIO	RTU				
FAN MO	OTOR	FAN MO	DTOR	FAN MO	DTOR				
MFG	Max Motion	MFG	Max Motion	MFG 🧹	Max Motion	i 🖓	FAN MOTOR		ACTUAL
MODEL	EM3218T	MODEL	EM3218T	MODEL	EM3218T		Fan Motor Horsepowe	1HP	1HP
MOTOR	PULLEY	MOTOR	PULLEY	MOTOR	PULLEY		Fan Motor RPM	1725	(1727
DIAMETE	R	DIAMETE	R	DIAMETE			Fan Motor Voltage	115	115
SHAFT	1/2IN	SHAFT	1/21	SHAFT	1/2	N	Fan Motor Amperage	8.1	6.8
FIXED/AD	Adj	FIXED/AD		FIXED/AD			Fan Service Factor	1.2	1.2
BELT NO	1456	BELT NO	1456	BELT NO	145	6	Fan RPM		514
FAN PU	5.25IN	FAN PU	5.25	FA	Baldor	EM3	218T		

Drawing

DIA

Fixe FIX 1456 BEI FIX

2/281 5/8" SH/

Maxmotion EM3218T

Baldor, not Max Motion, makes 9 Different EM3218T models.

> All models are: .5 HP 1800 RPM 184T Frame

Get full specifications	on Baldor EM3218T Gen	eral Purpose
General Details		
Category: General Purpose	Product Line: Super – E	HP: 5
KW : 3.73	RPM : 1800	Voltage: 230/460
Enclosure: ODP	Frame: 184T	Motor Standards: NEMA

DIAMETE

SHAFT

FIXED/AD

BELT NO

2/28IN

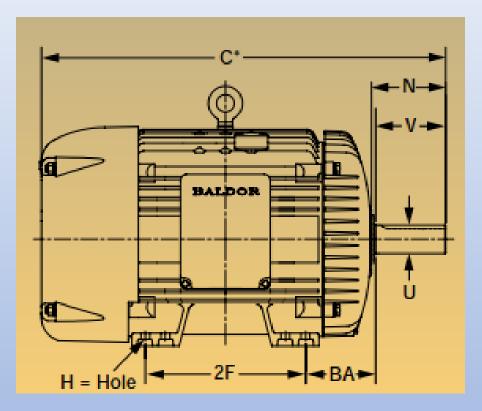
5/8"

Fixed

1456

DIAMETE

SHAFT


FIXED/AD

BELT NO

NEMA Chart

All motor frames only have ONE corresponding bore size.

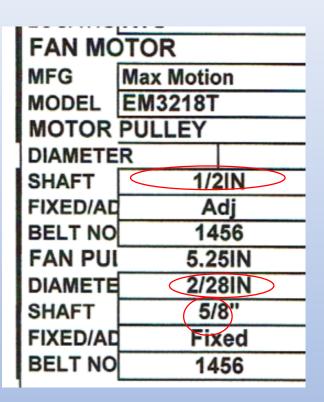
This is the U- Value on The NEMA Chart

You find the frame and go across to the U column and that's the only bore size possible.

NEMA Chart

-Cont	act you	r Iocal B	aloor on	ice for "	C. Dimen										N, U, P, A	us and X	u are spe	CIFIC TO B	saidor.
					N	EMA	QU	ICK	REF	ER	ENCE	CH	ART						
NEMA FRAME	D	E	2F	н	N	0	Р	u	v	AA	AB	АН	LA	АК	ва	вв	BD	xo	TAP
42	2-5/8	1-3/4	1-11/16	9/32 5LOT	1-1/2	5	4-11/16	3/8	1-1/8	3/8	4-1/32	1-5/16	3-3/4	3	2-1/16	1/8	4-5/8	1-9/16	1/4-20
48	3	2-1/8	2-3/4	11/32 SLOT	1-7/8	5-7/8	5-11/16	1/2	1-1/2	1/2	4-3/8	1-11/16	3-3/4	3	2-1/2	1/8	5-5/8	2-1/4	1/4-20
55	3-1/2	2-7/16	3	11/32 5LOT	2-7/16	6-7/8	6-5/8	5/8	1-7/8	1/2	5	2-1/16	5-7/8	4-1/2	2-3/4	1/8	6-1/2	2-1/4	3/8-16
143T 145T	3-1/2	2-3/4	4	11/32	2-1/2	6-7/8	6-5/8	7/8	2-1/4	3/4	5-1/4	2-1/8	5-7/8	4-1/2	2-1/4	1/8	6-1/2	2-1/4	3/8-16
182	4-1/2	3-3/4	4-1/2 5-1/2	13/32	2-11/16	8-11/16	7	/B 7/8	2-1/4 2-1/4	3/4	5-7/8	2-1/8 2-1/8	5-7/8 5-7/8	4-1/2 4-1/2	2-3/4	1/B 1/B	6-1/2 6-1/2	2-3/8	3/8-16
182T			4-1/2		3-9/16			1-1/8	2-3/4			2-5/8	7-1/4	8-1/2		1/4	9		1/2-13
184T 213		<u> </u>	5-1/2	<u> </u>	3-9/16			1-1/8	2-3/4		2	2-5/8	7-1/4	8-1/2		1/4	9		1/2-13
215	5-1/4	4-1/4	7	13/32	3-1/2	10-1/4	9-9/16	1-1/8	3	3/4	7-3/8	2-3/4	7-1/4	8-1/2	3-1/2	1/4	9	2-3/4	1/2-13
213T 215T			5-1/2		3-7/8 3-7/8			1-3/8	3-3/8			3-1/8							
254U			8-1/4		4-1/16			1-3/8	3-3/4			3-1/2							
256U	6-1/4	5	10	17/32	4-1/16	12-7/8	12-15/16	1-3/8	3-3/4	1	9-5/8	3-1/2	7-1/4	8-1/2	4-1/4	1/4	10	-	1/2-13
254T 256T			8-1/4		4-5/16 4-5/16			1-5/8	4		3	-3/4							
254U			9-1/2		5-1/8			1-5/8	4-7/8			4-5/8							
286U 284T	7	5-1/2	11 9-1/2	17/32	5-1/8 4-7/8	14-5/8	14-5/8	1-5/8	4-7/8	1-1/2	13-1/8	4-5/8		10-1/2	4-3/4	1/4	11-1/4	_	1/2-13
2861	· *	3-112	11	10.32	4-7/8	14-20	14-310	1-7/8	4-5/8	1-172	1.3-1/0	4-3/8		10-172	4-24		11-104	-	112-13
28415			9-1/2		3-3/8			1-5/8	3-1/4			3							
286TS 324U		<u> </u>	10-1/2	<u> </u>	3-3/8	<u> </u>	<u> </u>	1-5/8	3-1/4	<u> </u>	<u> </u>	3-3/8	<u> </u>	<u> </u>		<u> </u>		<u> </u>	
326U			12		5-7/8			1-7/8	5-5/8			5-3/8							
324T	8	6-1/4	10-1/2	21/32	5-1/2	16-1/2	16-1/2	2-1/8	5-1/4	z	14-1/8	5	11	12-1/2	5-1/4	1/4	13-3/8	-	5/8-11
326T 324TS			12 10-1/2		5-1/2			2-1/8	5-1/4			3-1/2							
32615			12		3-15/16			1-7/8	3-3/4			3-1/2							
364U			11-1/4		6-3/4			2-1/8	6-3/8			6-1/8							
365U 364T	9	7	12-1/4	21/32	6-3/4	18-1/2	18-1/4	2-1/8 2-3/8	6-3/8 5-7/8	2-1/2	15-1/16	6-1/8 5-5/8	11	12-1/2	5-7/8	1/4	13-3/8	_	5/8-11
365T	-	· ·	12-1/4		6-1/4	14-174	10-114	2-3/8	5-7/8	a-11a	12-010	5-5/8		14-114			Tar-and		210-11
36415			11-1/4		4			1-7/8	3-3/4			3-1/2							
365TS 404U		<u> </u>	12-1/4	<u> </u>	4	<u> </u>	<u> </u>	1-7/8	3-3/4	<u> </u>		3-1/2	<u> </u>	<u> </u>		<u> </u>		<u> </u>	
405U			13-3/4		7-3/16			2-3/8	7-1/8			6-7/8							
404T	10	8	12-1/4	13/16	7-5/16	20-5/16	20-1/8	2-7/8	7-1/4	3	18	7	11	12-1/2	6-5/8	1/4	13-7/8	-	5/8-11
405T 404TS			13-3/4 12-1/4		7-5/16 4-1/2			2-7/8	7-1/4			7							
40515			13-3/4		4-1/2			2-1/8	4-1/4										
444U			14-1/2		8-5/8	22-7/8	22-3/8	2-7/8	8-5/8		19-9/16	8-3/8							
445U 444T			16-1/2 14-1/2		8-5/8 8-1/2	22-7/8 22-7/8	22-3/8	2-7/8	8-5/8		19-9/16	8-3/8							
445T			16-1/2		8-1/2	22-1/6	22-3/8	3-3/6	8-1/2		19-9/16	8-1/4							
447T	11	9	20	13/16	8-15/16	22-15/16	23-3/4	3-3/8	8-1/2	3	21-11/16	8-1/4	14	16	7-1/2	1/4	16-3/4	-	5/8-11
449T			25		8-15/16	22-15/16	23-3/4	3-3/8	8-1/2		21-11/16	8-1/4							
444TS 445TS			14-1/2 16-1/2		5-3/16	22-7/8	22-3/8	2-3/8	4-3/4		19-9/16	4-1/2 4-1/2							
44715			20		4-15/16	22-15/16	23-3/4	2-3/8	4-3/4	4NPT	21-11/16	4-1/2							
44915			25		4-15/16	22-15/16	23-3/4	2-3/8	4-3/4	4NPT	21-11/16	4-1/2							

NEMA Chart


NEMA FRAME	D	Е	2F	н	N	ο	Р		v	AA	AB	АН	AJ	AK	BA	вв	BD	хо	ТАР
42	2-5/8	1-3/4	1-11/16	9/32 SLOT	1-1/2	5	4-11/16	3/8	1-1/8	3/8	4-1/32	1-5/16	3-3/4	3	2-1/16	1/8	4-5/8	1-9/16	1/4-20
48	3	2-1/8	2-3/4	11/32 SLOT	1-7/8	5-7/8	5-11/16	1/2	1-1/2	1/2	4-3/8	1-11/16	3-3/4	3	2-1/2	1/8	5-5/8	2-1/4	1/4-20
56 56H	3-1/2	2-7/16	3 5	11/32 SLOT	2-7/16 2-1/8	6-7/8	6-5/8	5/8	1-7/8	1/2	5	2-1/16	5-7/8	4-1/2	2-3/4	1/8	6-1/2	2-1/4	3/8-16
143T 145T	3-1/2	2-3/4	4 5	11/32	2-1/2	6-7/8	6-5/8	7/8	2-1/4	3/4	5-1/4	2-1/8	5-7/8	4-1/2	2-1/4	1/8	6-1/2	2-1/4	3/8-16
182 184 182T 184T	4-1/2	3-3/4	4-1/2 5-1/2 4-1/2 5-1/2	13/32	2-11/16 2-11/16 3-9/16 3-9/16	8-11/16	7 7-7/8	/8 7/8 1 1/8 (1-1/8)	2-1/4 2-1/4 2-3/4 2-3/4	3/4	5-7/8	2-1/8 2-1/8 2-5/8 2-5/8	5-7/8 5-7/8 7-1/4 7-1/4	4-1/2 4-1/2 8-1/2 8-1/2	2-3/4	1/8 1/8 1/4 1/4	6-1/2 6-1/2 9 9	2-3/8	3/8-16 3/8-16 1/2-13 1/2-13
212			5-1/2		3-1/2				3		2	-3/4							

The motor model listed in the TAB report only came in a 184T Frame, so it will ALWAYS have a 1 1/8ths motor bore.

The motor model listed in the TAB report only came in a 184T Frame, so it will ALWAYS have a 1 1/8ths motor bore.

Motor bores typically come in $\frac{1}{2}$ or $\frac{1}{8}$ " measurements.

Fan bores typically come in whole numbers, 1/16th inch and quarter inch measurements.

I have NO IDEA what 2/28" is. It's not on any tape measure that I'm aware of, but it sure is in this report!

Importance of Quality of Readings

If 75% of the readings are between the highest reading, and 10% of the highest reading, the data is acceptable." - ASHRAE 111

Example

1200	1145	1100	105
1150	1025	950	400
1075	975	825	-295
1020	950	115	650

In this traverse, at least 75% of the readings are between 1200 fpm (the highest reading), and 120 fpm (10% of the highest reading).

13 of the 16 readings fall between 120 fpm and 1200 fpm.

13 ÷ 16 = 81%

Which of the following traverses are acceptable under the ASHRAE rule?

Why?

			_	-				_
1550	1145	800	0		155	180	981	1910
1235	825	770	0		115	245	1025	2015
1158	500	730	-455		175	165	1250	1750
345	275	310	-250		135	155	970	1670
		Ą					B	

Which of the following traverses are acceptable under the ASHRAE rule?

Why?

1550	1145	800	0
1235	825	770	0
1158	500	730	-455
345	275	310	-250

Α

In this traverse, at least 75% of the readings must be between 1550 fpm (the highest reading), and 155 fpm (10% of the highest reading).

12 of the 16 readings fall between 155 fpm and 1550 fpm.

12 ÷ 16 = 75%

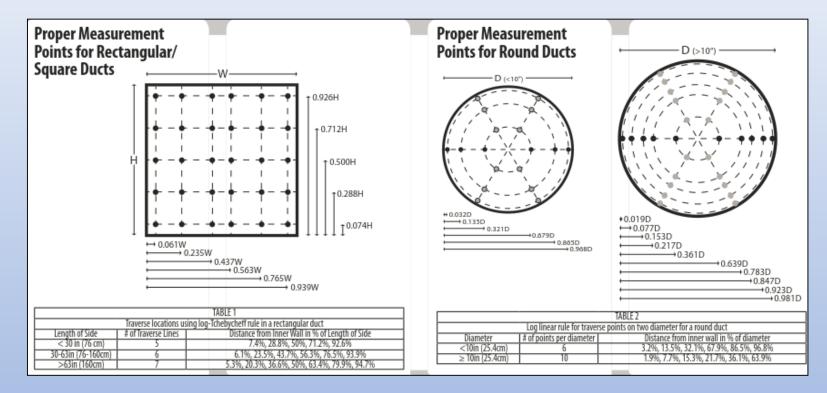
Which of the following traverses are acceptable under the ASHRAE rule? Why?

155	180	981	1910
115	245	1025	2015
175	165	1250	1750
135	155	970	1670

В

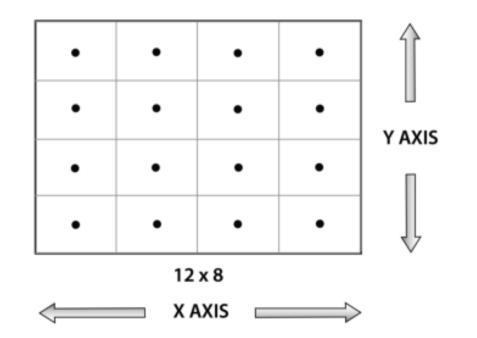
In this traverse, at least 75% of the readings must be between 2015 fpm (the highest reading), and 202 fpm (10% of the highest reading).

9 of the 16 readings fall between 202 fpm and 2015 fpm.


9 ÷ 16 = 56%

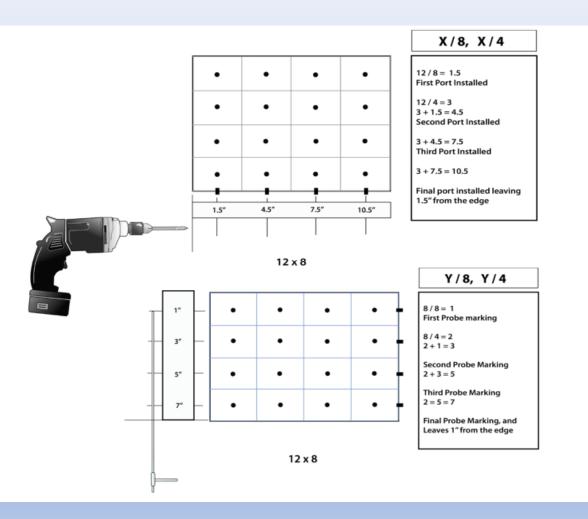
Log / Tchebycheff Duct Traverse Method

Rectangular traverse will have minimum of 25 readings, maximum of 49. Round traverse will have a minimum of 12 readings, maximum of 20.

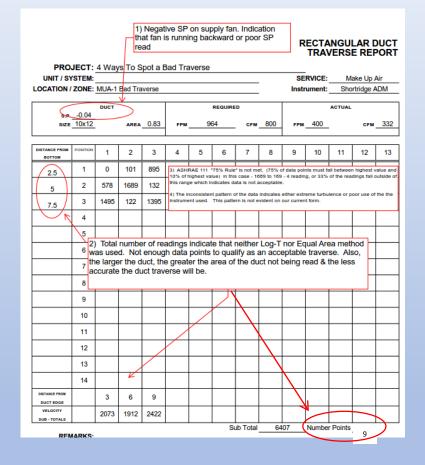


Equal Area Duct Traverse

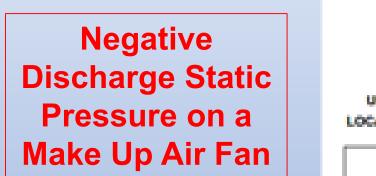
- 1. Ports / markings at edges are half the distance of the rest.
- 2. 16 to 64 readings.
- Ports / markings are to be no more than 6" apart.
- Ducts larger than 48" will exceed the 6" distance to maintain 64 readings.

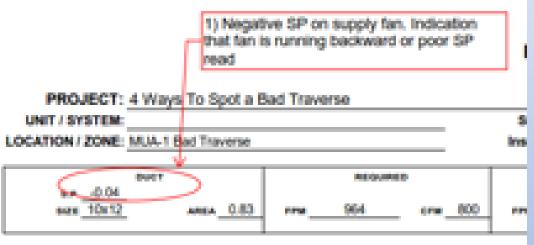


Duct Traverse – Equal Area



Acceptable Method Was not used.


BOTABLE FROM	rustion	1	2	3
25	1	0	101	695
5	2	576	1689	132
7.5	3	1495	122	1395
\sim / \sim				



Duct Traverse

Duct Traverse

Applying Fan Laws to Report Review

Situation

Off Brand Kitchen Hood with Non-Standard Grease Extractor Filters.

Unable to find manufacture's best practices, so TAB Professional used best method available.

4" opening, used a 4" Rotating Vane.

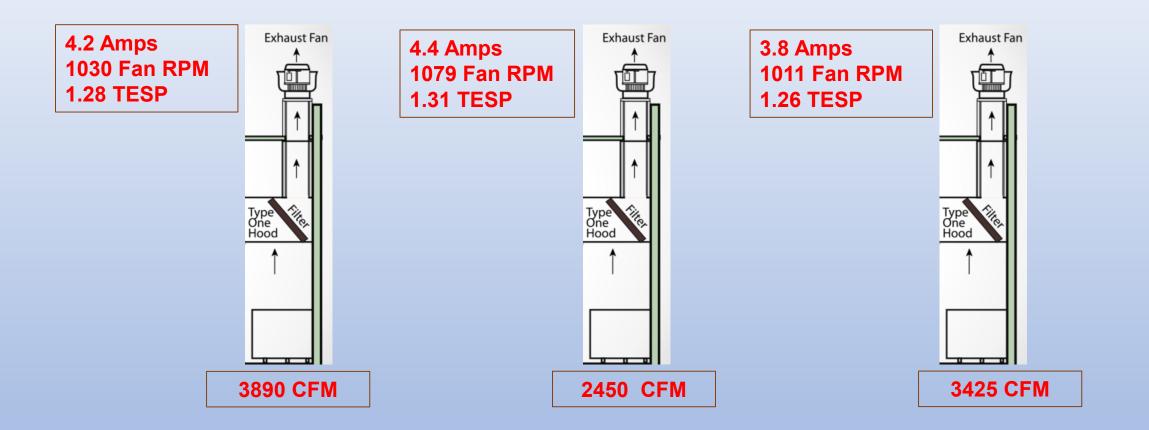

Detailed the procedure and submitted the following data.

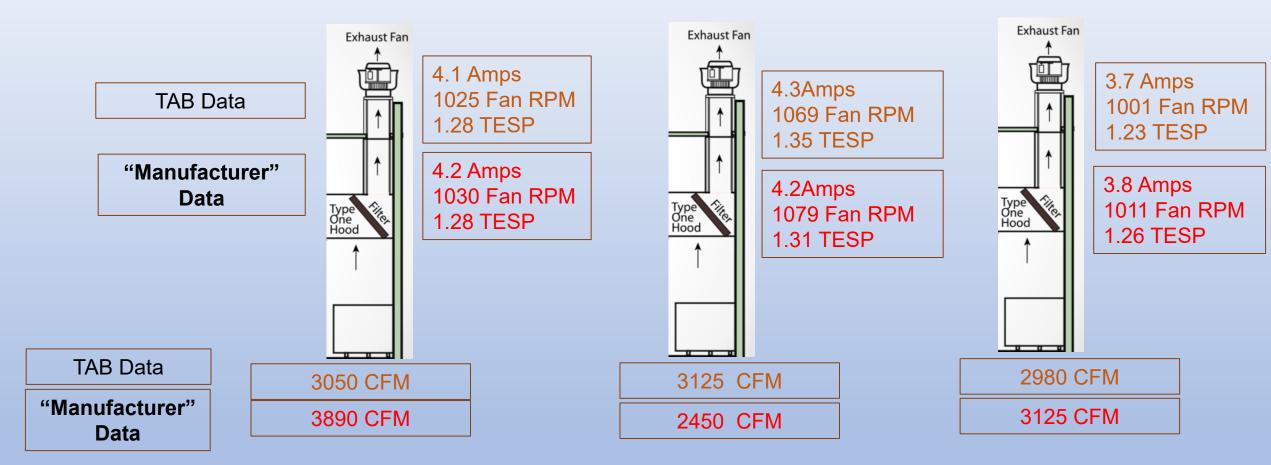
Initial TAB Readings

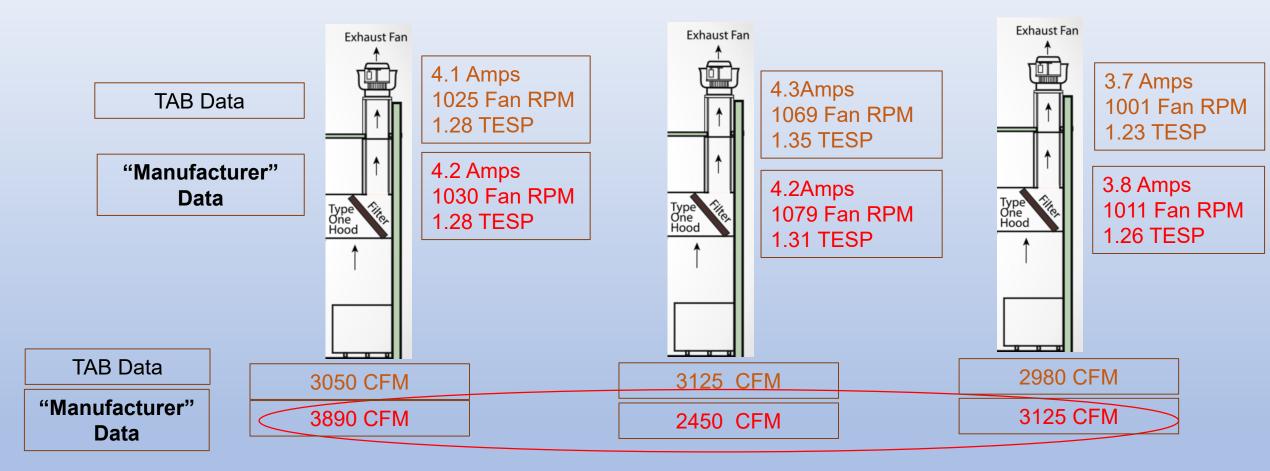
MEP Response

The design team reviewed the data but didn't like the methodology used.

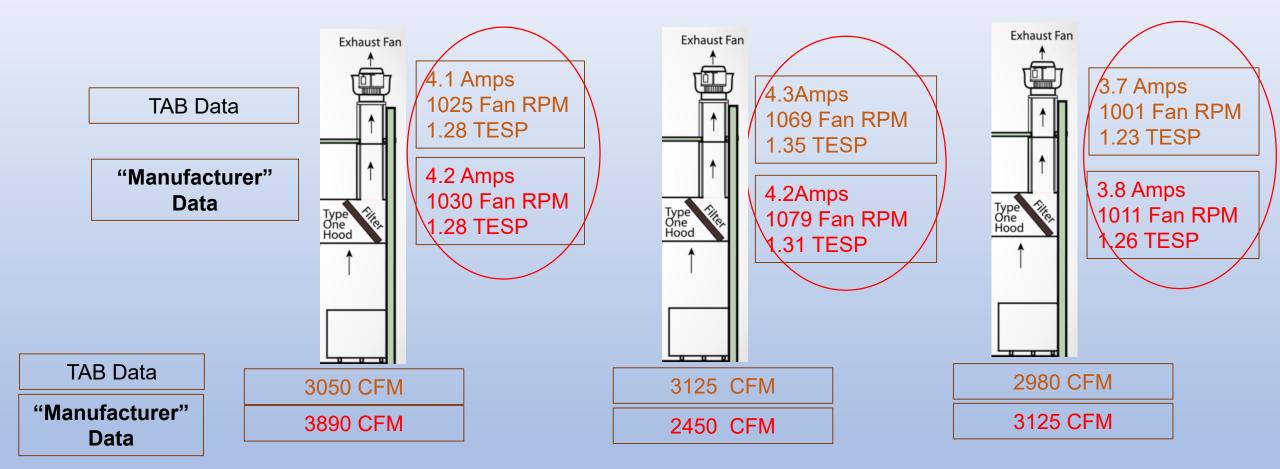
The design team called to have the "Manufacturer's Rep" go verify the readings. (Remember, the new owner / distributor of the product line had already informed the TAB Professional that they weren't making it, just selling existing inventory and had no product experts on staff.)

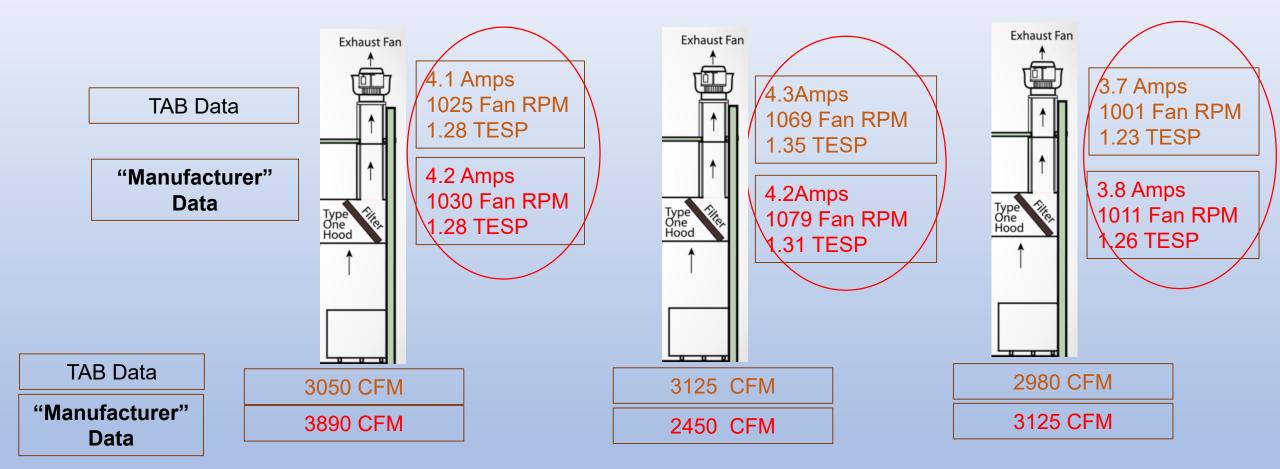

The "Manufacturer's Rep" provided the data on the following page.


"Manufacturer's" Readings



What Do our Fan Laws Tell Us About this situation?

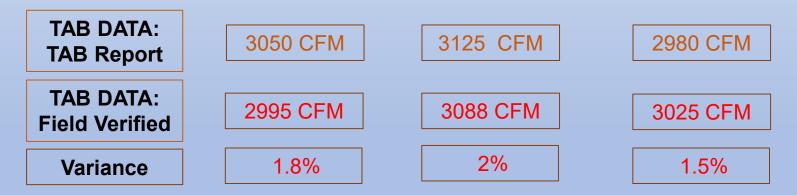



Our FAN LAWS tell us that the airflow is the same. This is fire-rated, 16 gauge duct that was already proven to have zero leakage. Two different technicians produced almost IDENTICAL amps, fan rpms and TESP.

Even if the TAB professional's readings are INNCORRECT, the "Manufacture's Readings" are **impossible**, as our FAN LAWS dictate that the air flow readings should be consistent. What do you think the "Manufacturer's Rep" may have done wrong?

What Else Our Fan Laws Tell Us About this Situation

- 1. Whoever took the readings was not malicious. They were capable at reading AMPS, RPMs, and TESP. The fact they knew how to do this and matched the certified professional tells me they have done this before.
- 2. Whatever instrument they used, wasn't being used correctly. They were either twisting it or holding it a varying distances. It could also mean they used a cheap, uncalibrated instrument or a combination of both.
- 3. The Rep did not understand airflow or their fan laws. If they had, they would have recognized the fact that their airflow readings were not physically possible.


Engineer Meeting On Job Site To Confirm Data

We live and work in a +/- 10% world. You will NEVER obtain the exact same readings twice. We balance fluids. They shift and move.

However, if we do things properly, we should ALWAYS be able to repeat our recorded values within +/- 5%, 10%. If it exceeds that ratio, you or your technician didn't do it correctly, or you are not maintaining your instruments.

The examples below are within 2% for very specific reasons: The EXACT same technician, used the EXACT same instrument, in the exact same manner, 3 to 4 weeks after his initial readings. Had he sent a technician six months later, with the same model, but different instrument, and that technician repeated the exact process, he should still be within +/- 5 to 10%.

Regardless, the Engineer was satisfied with the readings and methodology.

How to Read & Interpret a TAB Report

If you see a TAB report where all of the actual numbers are the same as the design numbers, physics and the laws of odds and probability tell us that these numbers are false!

The industry standard for TAB is +/- 10%, some specifications are +/- 5%.

TAB professionals would make HORRIBLE finish carpenters, because they deal in exact measurements.

Picture a bad Geico commercial where none of the trim on house lines up because a TAB professional used the +/- ten percent standard.

Flip side of the coin, professionals used to dealing with solids, wood, metal, etc. make horrible balancers, and that's how you know that another contractor generated that report.

In Closing

I would like to reiterate that all mistakes and questionable data in TAB reports does not mean the TAB contractor was simply making up numbers.

Human error is involved in every step, of every process.

If data is questionable, or simple wrong, please provide the contracted TAB Professional the opportunity to explain the data, correct the data, or support the data by meeting them in the field.

In the meantime, I encourage all professionals involved in this process, from the field technician, to the TAB Supervisor, to mechanical contractor to the design team to review the data more carefully, and work together to interrupt and understand the data.

