No-Nonsense Energy Analysis for HVAC

Benjamin Lipscomb, P.E. National Comfort Institute, Inc.

Content and illustrations © NCI Inc. 2020

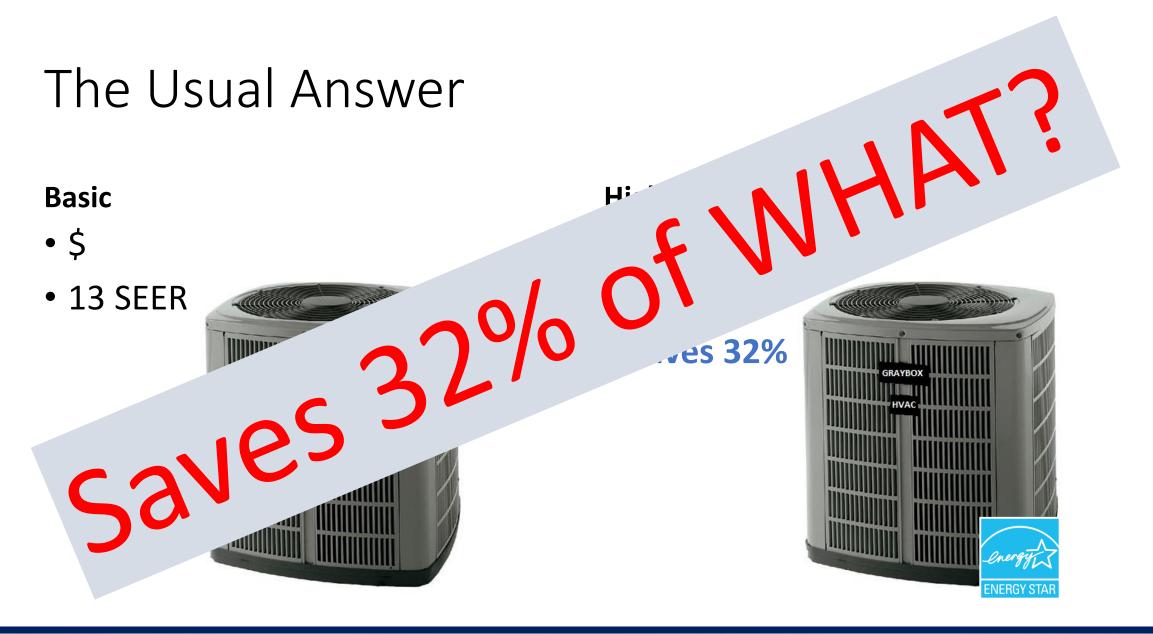
Introduction

- We're often asked: How much will it save?
- It's a difficult question to answer
 - Every home is unique
 - Deemed savings don't work for individual homes
 - Other methods aren't quick, cheap, or simple
- A simple method to estimate savings and present them to homeowners in terms they understand

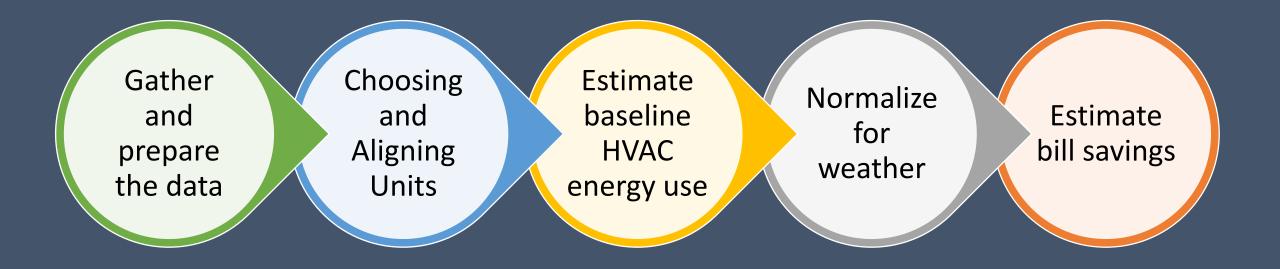
Outline

- The customer's first two questions
- The usual answer
- The better answer
- Performing a basic utility bill analysis
 - Gathering and cleaning the data
 - Choosing units: kWh, therms, or dollars
 - Estimating baseline HVAC energy use
 - Weather normalization
 - Estimating bill savings
- The conversation at the kitchen table
- Resources and tools
- Summary and Conclusion

The Customer's First Two Questions

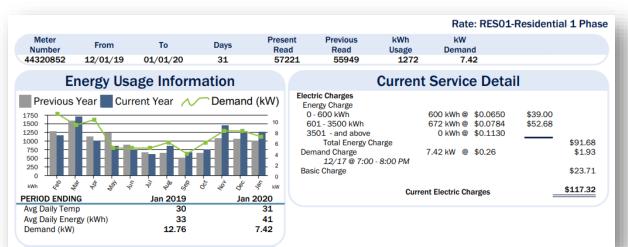


HOW MUCH WILL IT COST? HOW MUCH WILL IT SAVE?



Energy Analysis Process Overview

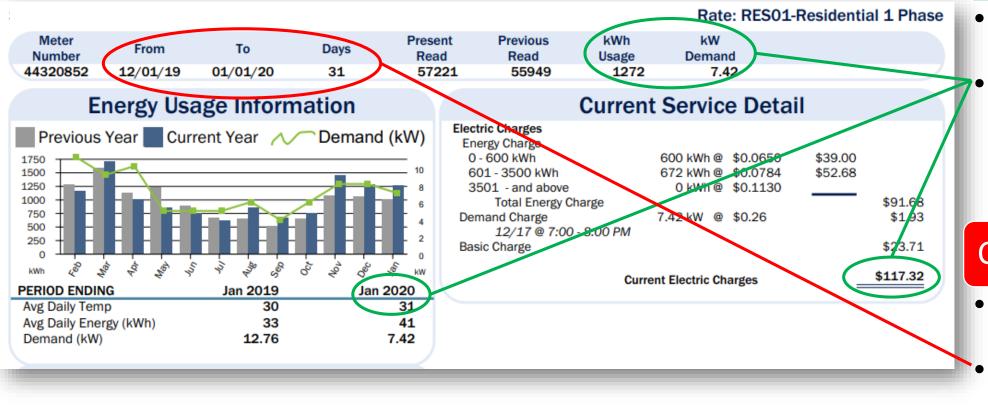
Gather and prepare the data



Gather and prepare the data Energy Use and Cost Data Sources

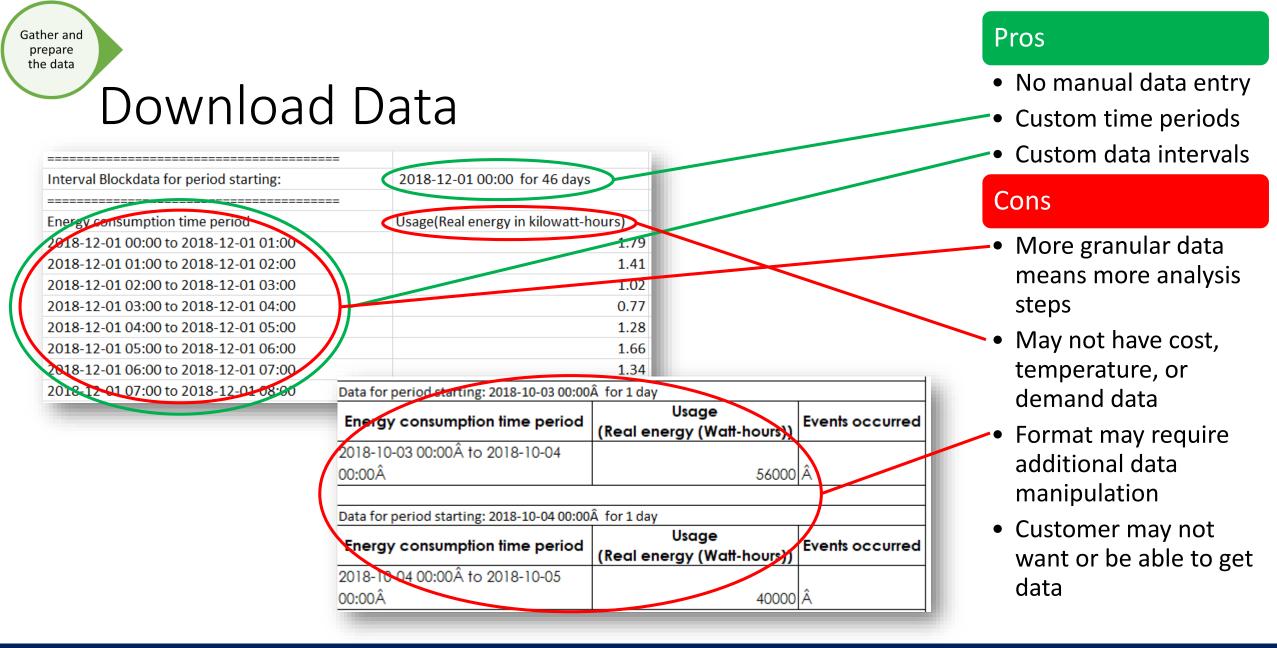
Utility Bills

Download Data


Detailed Usage		
Start date: 2018-12-01 00:00 for 46 days		
Interval Blockdata for period starting:	2018-12-01 00:00 for 46 days	
Energy consumption time period	Usage(Real energy in kilowatt-hours)	Events occurred
2018-12-01 00:00 to 2018-12-01 01:00	1.79	
2018-12-01 01:00 to 2018-12-01 02:00	1.41	
2018-12-01 02:00 to 2018-12-01 03:00	1.02	
2018-12-01 03:00 to 2018-12-01 04:00	0.77	
2018-12-01 04:00 to 2018-12-01 05:00	1.28	
2018-12-01 05:00 to 2018-12-01 06:00	1.66	
2018-12-01 06:00 to 2018-12-01 07:00	1.34	
2018-12-01 07:00 to 2018-12-01 08:00	1.47	

Pros

- Customers might have on file
- Includes many types of data incl. energy use, costs, peak demand, average daily temp


Cons

- Manual data entry for analysis
- Billing periods may be inconsistent

- Select most recent 12-month period with close to 30 days in each bill, in a period of "normal" use
- Use current charges for cost rather than amount due
- Use actual meter reads, avoid estimated when possible
- Avoid data with gaps or overlaps

Date Mailed	Billing Period	Billed Days	Total Therms	Current Charges	Total Amount Due	
04/02/2019	03/25/19 - 03/30/19	5	1	\$2.03	<u>\$1.38</u>	
03/27/2019	02/22/19 - 03/25/19	31	47	\$60.35	<u>\$35.35</u>	
02/26/2019	01/23/19 - 02/22/19	30	68	\$88.25	<u>\$23.25</u>	
01/25/2019	12/21/18 - 01/23/19	33	72	\$96.47	<u>\$63.07</u>	
12/26/2018	11/21/18 - 12/21/18	30	47	\$58.55	<u>\$86.60</u>	
11/26/2018	10/22/18 - 11/21/18	30	28	\$33.25	<u>\$28.05</u>	
10/24/2018	09/19/18 - 10/22/18	33	19	\$25.04	<u>\$5.20 CR</u>	
09/21/2018	08/21/18 - 09/19/18	29	15	\$21.81	<u>\$47.76</u>	
08/23/2018	07/20/18 - 08/21/18	32	17	\$25.95	<u>\$25.95</u>	
07/24/2018	06/20/18 - 07/20/18	30	15	\$20.41	<u>\$19.83</u>	
06/22/2018	05/21/18 - 06/20/18	30	17	\$22.10	<u>\$45.42</u>	
05/23/2018	04/20/18 - 05/21/18	31	20	\$23.32	<u>\$23.32</u>	
04/24/2018	03/22/18 - 04/20/18	29	22	\$24.77	<u>\$69.29</u>	
03/26/2018	02/21/18 - 03/22/18	29	41	\$44.52	<u>\$44.52</u>	
02/23/2018	01/20/18 - 02/21/18	32	48	\$52.98	<u>\$52.98</u>	
01/23/2018	12/19/17 - 01/20/18	32	56	\$60.54	<u>\$44.78</u>	
12/21/2017	11/20/17 - 12/19/17	29	37	\$41.19	<u>\$40.24</u>	
11/22/2017	10/18/17 - 11/20/17	33	23	\$27.60	<u>\$27.05</u>	

Preparing Utility Bill Data

- Assign each bill to a month for analysis
 - Assign to the month that most of the billed days fell on
 - -OR-

Gather and prepare the data

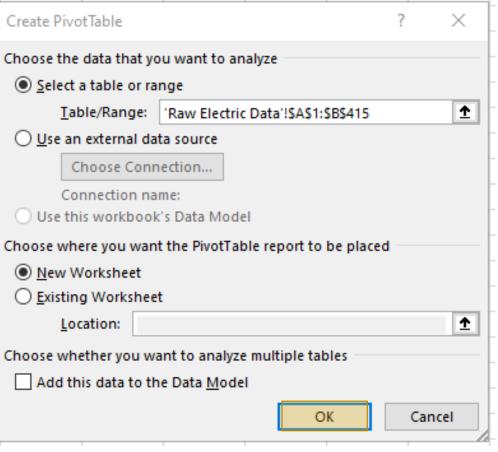
- Calculate average daily use for each billing period and use weighted average to assign calendar months
- Number sequentially and sort
 so months are in order starting in January

	Billing						
Date	Period	Billing	Billed	Total	Current		
Mailed	Start	Period End	Days	Therms	Charges	Month	Month #
1/25/2019	12/21/2018	1/23/2019	33	72	\$96.47	Jan	1
2/26/2019	1/23/2019	2/22/2019	30	68	\$88.25	Feb	2
3/27/2019	2/22/2019	3/25/2019	31	47	\$60.35	Mar	3
4/24/2018	3/22/2018	4/20/2018	29	22	\$24.47	Apr	4
5/23/2018	4/20/2018	5/21/2018	31	20	\$23.32	May	5
6/22/2018	5/21/2018	6/20/2018	30	17	\$22.10	Jun	6
7/24/2018	6/20/2018	7/20/2018	30	15	\$20.41	Jul	7
8/23/2018	7/20/2018	8/21/2018	32	17	\$25.95	Aug	8
9/21/2019	8/21/2018	9/19/2018	29	15	\$21.81	Sep	9
10/24/2018	9/19/2018	10/22/2018	33	19	\$25.04	Oct	10
11/26/2018	10/22/2018	11/21/2018	30	28	\$33.25	Nov	11
12/26/2018	11/21/2018	12/21/2018	30	47	\$58.55	Dec	12

Preparing Downloaded Data – Roll up to Monthly

Date	Usage kWh
10/1/2018	31
10/2/2018	26
10/3/2018	56
10/4/2018	40
10/5/2018	36
10/6/2018	35
10/7/2018	32
10/8/2018	63
10/9/2018	18
10/10/2018	13
10/11/2018	13
10/12/2018	13
10/13/2018	14
10/14/2018	12
10/15/2018	14

Gather and

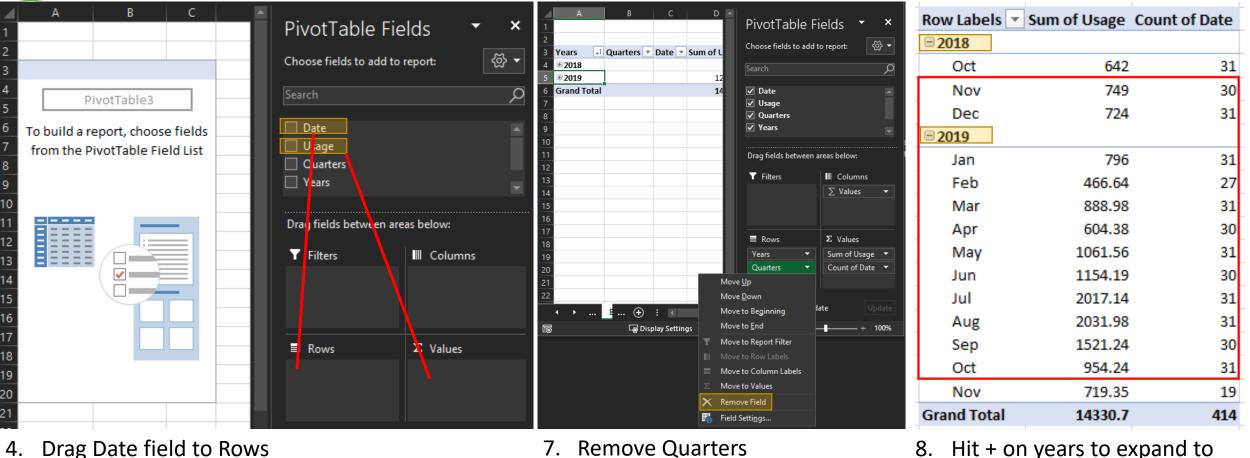

prepare the data

Daily Utility Data .csv

Fi	ile Home	e Inse	ert	Page La	iyout f	ormulas			
	I.↓	2			9 🖂				
Piv	PivotTable Recommended Table Pictures Online Shapes Ic PivotTables Pictures ~								
	Tat	les				Illus			
A	L -	: >	× v	f _x	Date				
	А	В		с	D	E			
1	Date	Usage k\	Nh						
2	10/1/2018		31						
3	10/2/2018		26						
4	10/3/2018		56						
5	10/4/2018		40						
6	10/5/2018		36						
7	10/6/2018		35						

1. Select all data

2. Insert > PivotTable


3. Click OK

Preparing Downloaded Data - Continued

5. Drag Usage field to Values

Gather and prepare the data

6. Drag Date field to Values



ORLANDO • FEB 3-5 • 2020

- 8. Hit + on years to expand to months
- 9. Select 12 most recent complete months

Choosing and Aligning Units

- Customers think in terms of dollars, not kWh and Therms
- Different rate structures mean it's not a straight conversion between energy use and cost
- Best to pull in data for gas and electric use and cost, we can use them all in the analysis
- Analyze cooling and heating bills separately, convert and combine energy and costs at the end
- For heat pumps, make an educated guess about which months are predominantly heating or cooling, and separate them

Therms

Choosing and Aligning Units

Example House

- Located in Peoria, IL
- 3,210 square feet
- Built in 2009
- Two gas furnaces, 167 kBTUh output total, both 92 AFUE
- Two AC units, 7 tons total, both 15 SEER
- Electric and Gas from Ameren

Estimate baseline HVAC energy use

Estimating Heating and Cooling Costs

1. Estimate "Base Load"

Estimate baseline HVAC energy use

- Non-heating gas loads water heating, clothes drying, cooking
- Non-heating or cooling electric loads lighting, water heating, clothes washing and drying, cooking, refrigeration, plug loads, etc.
- 2. Subtract Base Load from Bills

baseline HVAC energy use

Estimate

Estimating Heating Use – Example

- Average the 3 months with the lowest use
 this is the estimated base load use
- 2. Subtract the average base load from the monthly use, zero out any negative values
 - this is the estimated monthly heating use
- 3. Total the monthly heating use for an estimate of the annual baseload and heating use

				Baseload	Heating
	Month	Therms	Gas Bill	Therms	Therms
	Jan	190.0	\$125.81	11.7	178.3
\geq	Feb	128.0	\$88.83	11.7	116.3
	Mar	129.8	\$88 .93	11.7	118.1
	Apr	49.2	\$40.30	11.7	37.5
	May	20.5	\$20.52	11.7	8.8
	Jun	12.1	\$17.35	11.7	0.4
_	Jul	11.9	\$21.21	11.7	0.2
g	Aug	11.7	\$21.40	11.7	0.0
	Sep	11.6	\$19.93	11.7	0.0
or	Oct	72.4	\$65.58	11.7	60.7
	Nov	124.0	\$82.71	11.7	112.3
	Dec	121.0	\$85.14	11.7	109.3
		882.1	\$677.73	140	742

baseline HVAC energy use

Estimate

Estimate Heating Cost – Example Continued

- Multiply average
 \$/Therm by heating use
 to estimate heating costs
- 3. Total monthly costs for annual estimated costs

				Heating	Monthly	Gas Heating
	Month	Therms	Gas Bill	Therms	\$/Therm	Cost
	Jan	190.0	\$125.81	178.3	\$0.66	\$118
	Feb	<u>128.0</u>	\$88.83	116.3	\$0 69	\$81
	Mar	129.8	\$88.93	118.1	\$0.69	\$81
	Apr	49.2	\$40.30	37.5	\$0.82	\$31
	May	20.5	\$20.52	8.8	\$1.00	\$9
	Jun	12.1	\$17.35	0.4	\$1.44	\$1
	Jul	11.9	\$21.21	0.2	\$1.79	\$0
	Aug	11.7	\$21.40	0.0	\$1.83	\$0
S	Sep	11.6	\$19.93	0.0	\$1.72	\$0
	Oct	72.4	\$65.58	60.7	\$0.91	\$55
	Nov	124.0	\$82.71	112.3	\$0.67	\$75
	Dec	121.0	\$85.14	109.3	\$0.70	\$77
		882.1	\$677.73	742	\$0.768	\$527

Estimate baseline HVAC energy use

Monthly Electric and Gas Use and Cost

			Monthly	Electric	Electric	Baseload	Heating	Monthly	Gas Baseload	Gas Heating
Month	Baseload kWh	Cooling kWh	\$/kWh	Baseload Cost	Cooling Cost	Therms	Therms	\$/Therm	Cost	Cost
Jan	598	198	\$0.099	\$60	\$20	11.7	178.3	\$0.66	\$8	\$118
Feb	598	0	\$0.108	\$65	\$0	11.7	116.3	\$0.69	\$8	\$81
Mar	598	291	\$0.093	\$55	\$27	11.7	118.1	\$0.69	\$8	\$81
Apr	598	6	\$0.101	\$61	\$1	11.7	37.5	\$0.82	\$10	\$31
May	598	463	\$0.130	\$78	\$60	11.7	8.8	\$1.00	\$12	\$9
Jun	598	556	\$0.182	\$109	\$101	11.7	0.4	\$1.44	\$17	\$1
Jul	598	1419	\$0.083	\$50	\$118	11.7	0.2	\$1.79	\$21	\$0
Aug	598	1434	\$0.053	\$32	\$76	11.7	0.0	\$1.83	\$21	\$0
Sep	598	923	\$0.058	\$35	\$54	11.7	0.0	\$1.72	\$20	\$0
Oct	598	356	\$0.061	\$36	\$22	11.7	60.7	\$0.91	\$11	\$55
Nov	598	151	\$0.101	\$60	\$15	11.7	112.3	\$0.67	\$8	\$75
Dec	598	126	\$0.099	\$59	\$12	11.7	109.3	\$0.70	\$8	\$77
Total or Average	7180	5921	\$0.092	\$699	\$506	140	742	\$0.768	\$151	\$527

Using Baseline Data

Estimate baseline HVAC

- Now we're armed with estimated heating and cooling costs based on real data, but proceed with caution
 - Varying rates mean % energy savings don't directly translate to \$ savings
 - An abnormally cold or warm year could skew results
- Use results to pre-qualify in a follow-up phone call:
 - "Based on preliminary analysis of your bills, your heating and cooling cost you over \$1,000 in the past year...
 - As a rough estimate, our high efficiency option could save you about 40%, or \$400 per year...
 - If you're truly interested, I can run some more numbers and give you a more precise estimate of the savings"

Normalizing for Weather

- So far, our analysis is based on last year's heating and cooling data, which are strongly influenced by last year's weather
- Last year's weather may or may not be similar to next year's weather, or to long term averages
- This can be used directly for savings estimates, but be cautious about how you present them: "This is what the new high efficiency system would have saved you in the past year"
- Normalization allows you to:
 - Project savings for a typical weather year
 - Compare utility bills before and after an upgrade to estimate savings

Do I Need to Normalize?

- For initial estimation purposes, normalization can often be skipped
- Consider whether the past year has had fairly typical weather, or if it's been out of the ordinary
- For a more scientific approach, compare the average temperatures for the billing period vs. long-term averages – if within a few degrees, consider skipping normalization
- We'll go through the normalization process quickly, but we don't have a lot of time to spend on the details
- Be sure to sign in with your email for a copy of the presentation

Obtain Weather Data

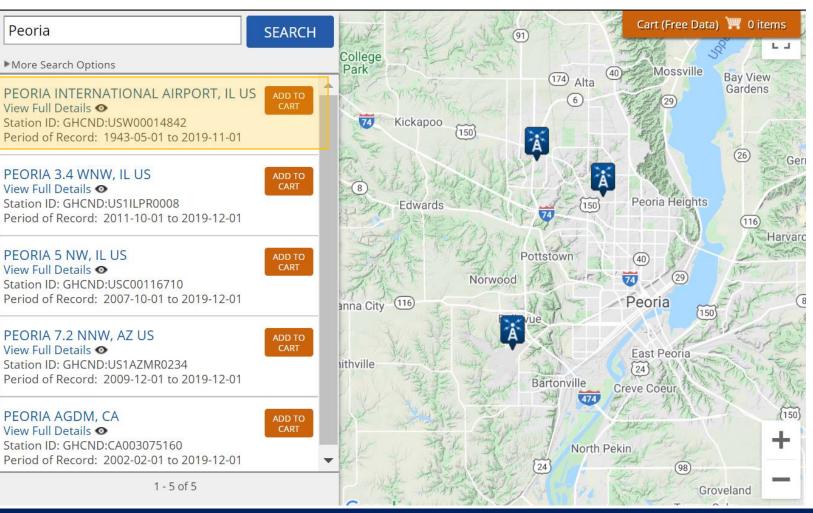
- Many data sources, we'll use NOAA Climate Data Online <u>https://www.ncdc.noaa.gov/cdoweb/search</u>
- Global Summary of the Month
- Date Range aligned with bills
- Search For: Stations, Zip Codes, Cities, etc.

Climate Data Online Search

Start searching here to find past weather and climate data. Search within a date range and select specific type of search. All fields are required.

Select Weather Observation Type/Dataset @

Global Summary of the Month	
Select Date Range 🛛	
2018-11-01 to 2019-10-31	ģ.
Search For 🛛	
Stations	
Enter a Search Term 🛛	



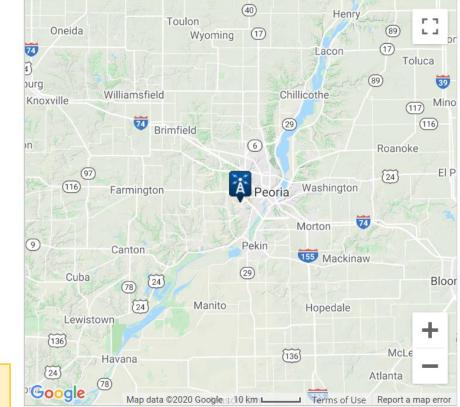
SEARCH

Select a Weather Station

- Airports usually have the most reliable data
- Add to Cart

BALANCING

COUNCIL


🔲 Datasets 🔲 Search Tool 📕 Mapping Tool 🔲 Data Tools 😰 Help

Cart (Free Data) 🛒 1 item

Global Summary of the Month Station Details

STATION DETAILS				
Name	PEORIA INTERNATIONAL AIRPORT, IL US			
Network:ID	GHCND:USW00014842			
Latitude/Longitude	40.6675°, -89.6839°			
Elevation	198.1 m			

Start Date ¹	1943-05-01
End Date ¹	2019-11-01
Data Coverage ²	100%

 \bigcirc

Step 3: Order Complete

Select Cart Options

Specify the desired formatting options for the data added in the cart. These options allow more refined date selection, selection of the processed format, and the option to remove items from the cart.

Step 2: Review Order

Select the Output Format

Choose one option below to choose a type of format for download. Formats are a standard PDF format. Other formats are CSV (Comma Separated Value) and Text format, both of which can be opened with programs such as Microsoft Excel or OpenOffice Calc. Some formats have additional options which can be selected on the next page.

> Global Summary of The Month PDF DOC Certification Option

(Does not include all elements)

Include Documentation

Custom Global Summary of The Month CSV ۲

Select the Date Range

Click to choose the date range below.

2018-11-01 to 2019-10-31

Review the items in your cart

PEORIA INTERNATIONAL AIRPORT, IL US View Full Details 👁 Station ID: GHCND:USW00014842

Period of Record: 1943-05-01 : 2019-11-01

Delete 🗂

[CLEAR CART

Step 1: Choose Options

Step 2: Review Order

Step 3: Order Complete

Data types are grouped by category for easier selection and can be selected as a group or individually. Selected data types will be included in the customized output.

Station Detail & Data Flag Options

Additional output options such as data flags (attributes), station names, and geographic location are also available.

- Station Name
- Geographic Location
- Include Data Flags
- Units Standard V

Select data types for custom output

The items below are data types that can be added to the output. Expand the data type category headers to view the categorized data type names and descriptions.

Show All / Hide All | Select All / Deselect All

E Computed

Image: Precipitation

- ⊡ Air Temperature
- Average Temperature. (TAVG)

Cooling Degree Days Season to Date (CDSD)

Extreme maximum temperature for the period. (EMXT)

Extreme minimum temperature for the period. (EMNT)

Heating Degree Days Season to Date (HDSD)

Maximum temperature (тмах)

■ Minimum temperature (TMIN)

• Wind

	Step 1: Choose Options	> Ste

Step 3: Order Complete

Please review these selected items from your request: dataset, date ranges, output format, data types, and selected stations/locations.

Once your order is checked, enter a valid email address and click the "SUBMIT ORDER" button to finalize the order. No actual data will be emailed directly. Only the links to access your ordered data from an FTP site will be sent.

p 2: Review Order

By submitting this request, you agree with both the disclaimer and the privacy policy.

REQUESTED DATA REVIEW						
Dataset	Global Summary of the Month					
Order Start Date	2018-11-01 00:00					
Order End Date	2019-10-31 23:59					
Output Format	Custom Global Summary of The Month CSV					
Data Types	TAVG					
Custom Flag(s)	Station Name					
Units	Standard					
Stations/Locations	PEORIA INTERNATIONAL AIRPORT, IL US (Station ID: GHCND:USW00014842)					

Enter email address

Please enter your email address. This is the address to which your data links and information regarding this order will be sent. Please read NOAA's Privacy Policy if you have any concerns.

Email Address

benl@ncihvac.com

Verify Email Address

benl@ncihvac.com

 \sim

 \sim

Remember my email address

[Uncheck to forget]

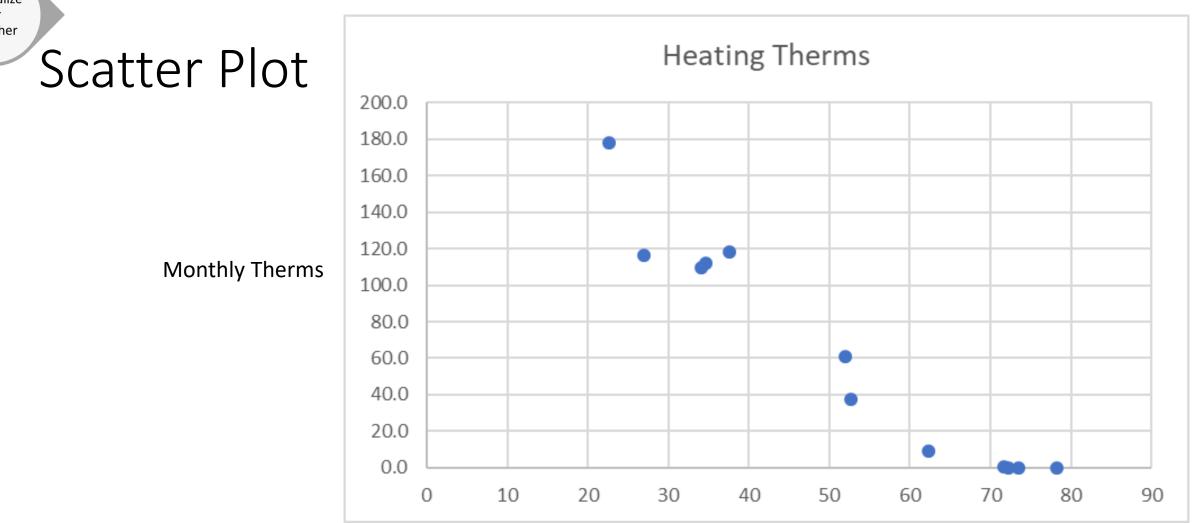
NOAA will not share your email address with anyone. The email address will not be used for any purpose other than communicating the order status.

t de la

- 1. Order Confirmation Email, wait a minute or two
- 2. Order Complete Email, click Download
- 3. Copy and Paste the Average Temperature data aligned with utility bills in your analysis

	· · · · · · · · · · · · · · · · · · ·		
STATION	NAME	DATE	TAVG
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2018-11	34.7
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2018-12	34.1
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2019-01	22.6
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2019-02	27
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2019-03	37.6
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2019-04	52.7
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2019-05	62.3
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2019-06	71.7
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2019-07	78.3
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2019-08	73.5
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2019-09	72.3
USW00014842	PEORIA INTERNATIONAL AIRPORT, IL US	2019-10	52

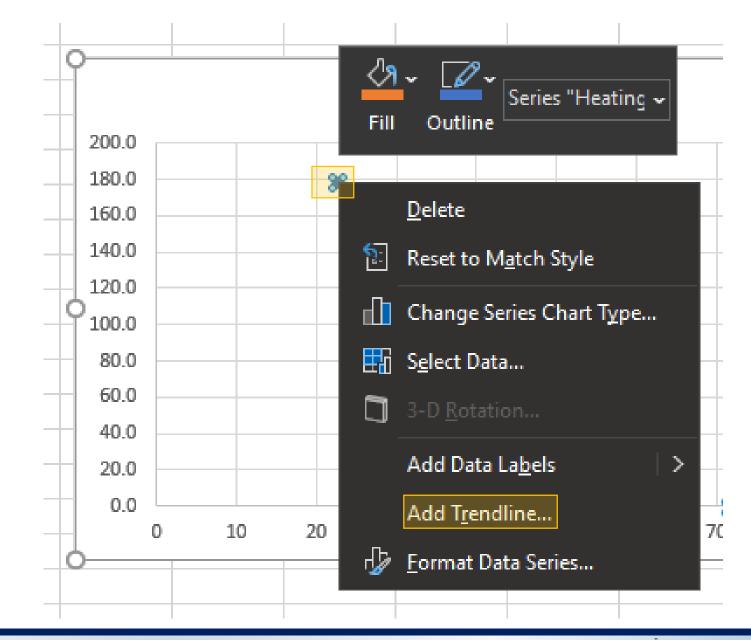
Plot Energy Use vs. Temperature


Normalize for weather

- Select monthly Average Temperature and Heating Therms (or Cooling kWh)
- 2. Insert > Scatter Plot

File Ho	ome Insert	Page Layout	Formulas [Data Reviev	v View	Dev	eloper
PivotTable Re	commended Table PivotTables	Illustrations ř]?	▋╴パ、 <u>↓</u> 、ゐ、 <u>、</u> 、	کی Maps ۲	PivotChart
	Tables				Scatter		2
Q2		<i>f</i> ∗ Heat H	ing Therms Q	l R			\bowtie
1			Heating	Monthly		\searrow	7
2	Month	-	Therms	\$/Therm	Bubble		,
3	Jan	. 22.6	178.3	\$0.6		_	1
4	Feb	27	116.3	\$0.6		ୢୄୄୄ	\$
5	Mar	37.6	118.1	\$0.6		<u> </u>	\$
5	Apr	52.7	37.5	\$0.8	1-		\$
7	May	62.3	8.8	\$1.0	<u>M</u> ore	Scatter (Charts
в	Jun	71.7	0.4	\$1.44	4	\$17	
9	Jul	78.3	0.2	\$1.79	Ð	\$21	
0	Aug	73.5	0.0	\$1.83	3	\$21	
1	Sep	72.3	0.0	\$1.72	2	\$20	
2	Oct	52	60.7	\$0.91	1	\$11	\$
3	Nov	34.7	112.3	\$0.67	7	\$8	\$
4	Dec	34.1	109.3	\$0.70	0	\$8	\$
5	Total or Average	51.57	742	\$0.768	8	\$151	\$5

Average Monthly Temperature



Add a Trendline

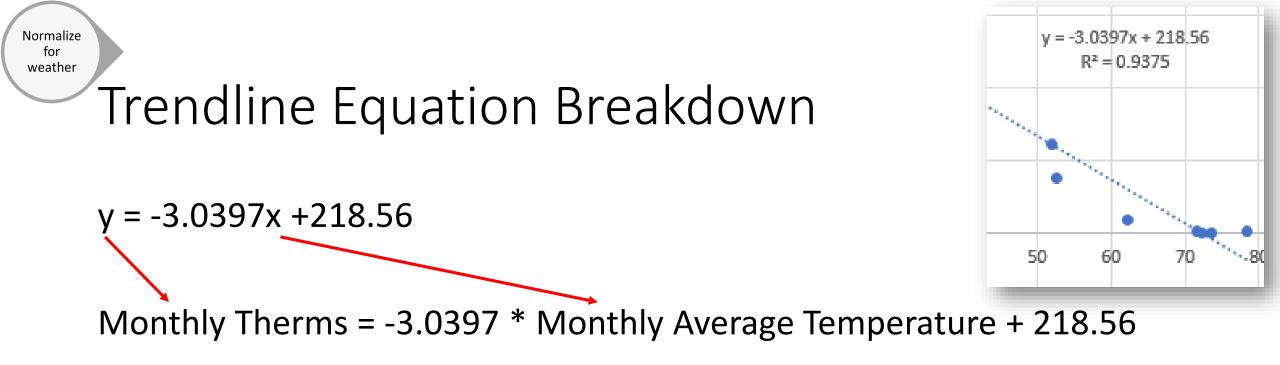
- Right Click on a data point
- Add Trendline...

COUNCI

Normalize Get Trendline Equation

for weather

- Select Linear to start
- Display Equation on chart
- Display R-squared value on chart – the closer to 1 the better
- Copy equation


y = -3.0397x + 218.56

COUNCIL

- Now we can estimate Monthly Therms for any Monthly Average Temperature!
- Let's go get some long-term average temperature data and see what therms use would be in a "typical" year

Normalize for weather

Back to the NOAA Weather Data

https://www.ncdc.noaa.gov/cdo-web/search

- 1. Select Normals Monthly this time
- 2. Date range will be an arbitrary year
- 3. Search for the same weather station you used for the baseline weather
- 4. The rest of the process is the same as for baseline weather

Climate Data Online Search

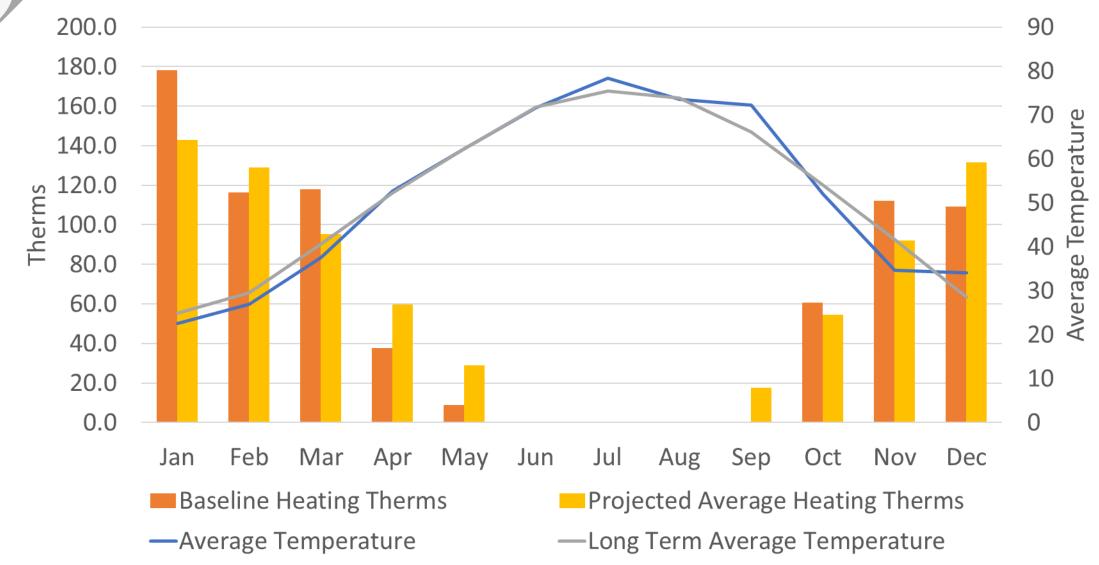
Start searching here to find past weather and climate data. Search within a date range and select specific type of search. All fields are required.

Select Weather Observation Type/Dataset @

Select Date Range 2010-01-01 to 2010-12-01 Search For	Normals Monthly	
	Select Date Range 🛛	
Search For 🤗	2010-01-01 to 2010-12-01	ģ.
Stations		

Peoria

Normalize Calculate Projected Therms for Typical Weather weather


JM - :	× 🗸)	£ = −3.0397*	*U3 +218.56								
В	н	Q	U	x	z	AA	AB	AC	AD	AE	AF
			Long Term								
	Average	Heating	Average	Projected Heating							
Month	Temperature	Therms	Temperature	Therms				Heating	Therms		
Jan	22.6	178.3	24.9	= -3.0397*U3 +218.56	200.0						
Feb	27	116.3	29.5	128.9	200.0						
Mar	37.6	118.1	40.6	95.1							
Apr	52.7	37.5	52.3	59.6	150.0		Contra State		v3	.0397x + 218	56
May	62.3	8.8	62.4	28.9				· · · ·		R ² = 0.9375	
Jun	71.7	0.4	71.8	0.3	100.0						
Jul	78.3	0.2	75.5	-10.9	Zero o	ut any			Sec. 1		
Aug	73.5	0.0	73.8	-5.8	negati	ve values			1. A A A A A A A A A A A A A A A A A A A		
Sep	72.3	0.0	66.1	17.6					•	Sec. 1	
Oct	52	60.7	54	54.4	0.0						-
Nov	34.7	112.3	41.6	92.1	0.0	0 10	20	30 40	50	60 7	0 80
Dec	34.1	109.3	28.6	131.6							
Total or Average	51.57	742	51.76	734.8	-50.0					1	

for

Baseline vs. Long-Term Average Projection

Normalize

for weather

Normalize for weather

Estimate Typical Monthly Costs

 Multiply the \$/Therm you calculated for each month by the Projected Average Heating Therms

лм - т :	×	⊊ =X3*R3		
В	R	U	x	Y
		Long Term		Projected
	Monthly	Average	Projected Average	Heating
Month	\$/Therm	Temperature	Heating Therms	Cost
Jan	\$0.66	24.9	142.9	=X3*R3
Feb	\$0.69	29.5	128.9	\$89.45
Mar	\$0.69	40.6	95.1	\$65.21
Apr	\$0.82	52.3	59.6	\$48.77
May	\$1.00	62.4	28.9	\$28.88
Jun	\$1.44	71.8	0.3	\$0.44
Jul	\$1.79	75.5	0.0	\$0.00
Aug	\$1.83	73.8	0.0	\$0.00
Sep	\$1.72	66.1	17.6	\$30.40
Oct	\$0.91	54	54.4	\$49.32
Nov	\$0.67	41.6	92.1	\$61.44
Dec	\$0.70	28.6	131.6	\$92.62
Total or Average	\$0.768	51.76	751.5	\$561.14

Calculate % Savings

1. Use rated and/or field-measured efficiency to estimate % Savings

$$Eff_{existing}\left(\frac{1}{Eff_{existing}} - \frac{1}{Eff_{new}}\right) = \% Savings$$

Replace 15 SEER with 21 SEER

$$15\left(\frac{1}{15} - \frac{1}{21}\right) = 29\%$$
 Savings

Field Measured Performance

- NCI trains contractors to measure total system performance in the field
- ASHRAE 221P (New Proposed Standard) defines:
 - CSPr Cooling System Performance Ratio
 - HSPr Heating System Performance Ratio

Field Measured System Capacity

Rated Equipment Capacity

Combining Equipment Rated Efficiency and CSPr or HSPr

Effective System Efficiency = SEER * CSPr Effective System Efficiency = AFUE * HSPr Effective System Efficiency = HSPF * HSPr

15 SEER with 57% CSPr

15 * 57% = 8.6 *Effective System SEER*

92 AFUE with 57% HSPr

92 * 57% = 52 *Effective System AFUE*

*Assumes no "thermal regain". If ducts are in (partially) conditioned space you gain back some of the system losses

Calculate Cost Savings

$$15\left(\frac{1}{15} - \frac{1}{21}\right) = 29\% Savings$$

29% * \$521.37 = \$151.20

Estimated Annual Electric Savings = \$151

Month	Baseline Projected Cooling Cost
Jan	\$13.31
Feb	\$17.30
Mar	\$14.26
Apr	\$19.87
May	\$54.97
Jun	\$166.98
Jul	\$100.34
Aug	\$56.54
Sep	\$33.75
Oct	\$13.22
Nov	\$15.37
Dec	\$15.48
Total	\$521.37

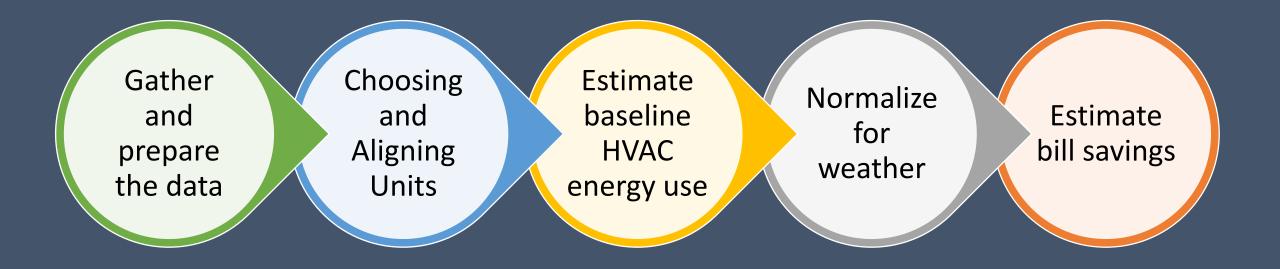
Replacement Scenario Development – Bad Condenser

				AC Upgrade
Cooling Savings	SEER 15		Duct	with Duct
Projection	Replacement	AC Upgrade	Rennovation	Rennovation
Baseline SEER/CSPr	15	15	57%	9
Upgrade SEER/CSPr	15	21	90%	19
% Savings	0%	29%	37%	55%
Baseline Cost	\$521	\$521	\$521	\$521
Cost Savings	\$0	\$149	\$191	\$286
				Existing
				Furnace With
Heating Savings			Duct	Duct
Projection	Existing Furnace	Existing Furnace	Rennovation	Rennovation
Baseline AFUE/HSPr	92%	92%	62%	57%
Upgrade AFUE/HSPr	92%	92%	90%	83%
% Improvement	0%	0%	45%	45%
% Savings	0%	0%	31%	31%
Baseline Cost	\$561	\$561	\$561	\$561
Cost Savings	\$0	\$0	\$175	\$175
Total Heating and				
Cooling Annual				
Energy Cost Savings	\$0	\$149	\$366	\$460

Comparison of Billing Analysis to Deemed

New AC and Duct Rennovation Savings Comparison	Billing Analysis	Deemed
kWh Savings	2936	884
% Cooling kWh Savings	55%	16%
Therms Savings	234	1662
% Heating Therms Savings	31%	221%

- Only 16% savings for more than doubling effective efficiency?
- 1662 therms savings? That's almost double what they used for the whole house, and more than twice what they used for just heating!


		Baseline
		Heating
Month	Therms	Therms
Jan	190.0	178.3
Feb	128.0	116.3
Mar	129.8	118.1
Apr	49.2	37.5
May	20.5	8.8
Jun	12.1	0.4
Jul	11.9	0.2
Aug	11.7	0.0
Sep	11.6	0.0
Oct	72.4	60.7
Nov	124.0	112.3
Dec	121.0	109.3
Total	882.1	742

Energy Analysis Process Overview

The Conversation at the Kitchen Table

- Explain that you've analyzed *their* situation, and have options and a recommendation
- Explain that your competitors may also provide estimates of savings, but advise them ask how the analysis was done
- If it was based on an average kWh/ton, kWh/square foot, "typical" operating hours or energy use, the estimates could be a long ways off

Present the Options

Replace Condenser

Total System Upgrade

Replace Condenser

- Like for like condenser replacement
- 15 SEER
- No energy savings
- Same comfort level
- 10 year parts only mfg. warranty

Total System Upgrade

- Complete new system including condenser, coil, thermostat, and duct renovation
- 21 SEER
- Improve System Performance from 57% to 90%
- About \$460 annual electric and gas cost savings
 - 55% of electric bill and 31% of gas bill
- Improved comfort in summer and winter
- Lifetime compressor, 10 year unit replacement and parts mfg. warranty
- 10 year repair labor warranty

Be careful...

- Be clear that the energy savings are estimates based on their past utility bills
- Be cautious about simple payback estimates, oftentimes they don't pencil out in terms of pure energy savings for residential
- Vet the customer and their interest in high efficiency options before you spend the time to do a full analysis
 - If they can't take the time to get you the data, don't press them they're
 probably not that concerned about their energy
- Don't spend more time than you need to on the analysis, if the prior year has had fairly typical weather, skip the weather normalization

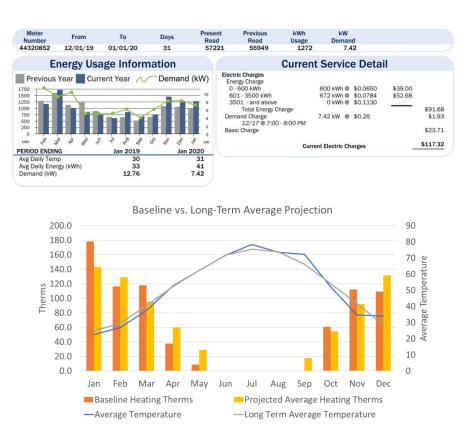
Minimum Steps for Utility Billing Analysis

- 1. Obtain 1 year of utility billing data
- 2. Average the lowest 3 months of use to estimate base load
- 3. Subtract base load from total use to estimate heating or cooling use
- 4. Calculate \$/therm or \$/kWh, multiply by heating or cooling use to get heating or cooling cost
- 5. Estimate % savings for proposed options
- 6. Multiply % savings by heating or cooling cost to get cost savings

Resources and Tools

- Weather Data
 - NOAA CDO: https://www.ncdc.noaa.gov/cdoweb/search
 - Weather Underground: <u>https://www.wunderground.com/history</u>
 - Degree Days: <u>https://www.degreedays.net/</u>
- Analysis Tools
 - Universal Translator: <u>http://utonline.org/cms/</u>
 - ECAM: <u>https://www.sbwconsulting.com/eca</u> <u>m/</u>

- Field Measured System Performance:
 - NCI Training: https://www.nationalcomfortinstitute .com/pro/index.cfm?pid=3084
 - ASHRAE Standard 221P: <u>https://www.ashrae.org/technical-</u> <u>resources/standards-and-</u> <u>guidelines/titles-purposes-and-</u> <u>scopes</u>



Conclusion

- The customer's first two questions
- The usual answer
- The better answer
- Performing a basic utility bill analysis
 - Gathering and cleaning the data
 - Choosing units: kWh, therms, or dollars
 - Estimating baseline HVAC energy use
 - Weather normalization
 - Estimating bill savings
- The conversation at the kitchen table
- Resources and tools
- Summary and Conclusion

