What it takes to get an installed HVAC system to operate at rated capacity

Tuesday January 15 1:00 to 2:30 Room B 312

#### Rob Falke

#### National Comfort Institute

Content and illustrations © NCI Inc. 2019









## "But all my systems do operate at rated capacity!"

Congratulations, you're in the top 1% of designers and installing contractors. We would be thrilled to review your installed system documentation.

This illustration represents the typical installed HVAC system performance from data gathered around the USA









# Equipment and an installed system are two different manufactured products

"The industry often refers to equipment as a system"

Equipment is:

- A manufactured and shipped product
- Built in a factory
- Rated for capacity and efficiency according to time proven industry standards.
- Normally sold to the installing contractor









# Equipment and an installed system are two different manufactured products

An HVAC system is a different manufactured product.

A system is:

- Built by a mechanical contractor
- It consists of ducts, fittings, grilles venting, flues, is attached to the building and the equipment
- Now, it can also be measured and scored.









Many believe installed system performance is found through design

- Dad's Duct Sizing Chart
- Began to purchase instruments and to test installed system values
- Learn our designs did not perform as we assumed they did.
- Began to make changes in design, equipment and installation.









"So, how do I know my installed systems are operating as they should?"

The Western HVAC Performance Alliance defines an efficient HVAC system by the ratio of the installed system delivered Btu/hr and the equipment rated Btu/hr.

#### Example:

Installed System delivered Btu/hr Equipment rated Btu/hr

Or, expressed as a percent 48%

48,000 100,000 100%

or

48%?







## 1a. Fan Airflow

#### Measure

- Traverse airflow near fan
- Plot fan airflow



#### Diagnose

- Compare actual fan airflow to required airflow
- If actual is more or less than 10% of design, make repairs and adjustments

#### Repair

- Adjust fan speed
- Reduce restrictions in system components or in air distribution

system







# 1b. Supply Register and Return Grille Airflow

#### Measure

- Air balance hood
- Traverse in duct or at grille with correction factors





#### Diagnose

- Add together grille or register airflows and compare total to fan or required system airflows
- Compare required room and zone airflows to actual airflows



- Adjust balancing dampers
- Repair or replace damaged or undersized ducting
- Replace register or diffuser



## 1c. Static Pressure Profiles



#### .50" Fan Rated Pressure

| Pressure   | Actual | Budget |
|------------|--------|--------|
| Total Ext. | .83″   | .50"   |
| Filter     | .24"   | .10"   |
| Coil       | .29"   | .20"   |
| Return     | .22"   | .10"   |
| Supply     | .08″   | .10"   |







## 1d. Static pressure testing

#### Measure

- Total external static pressure
- Filter pressure drop
- Coil pressure drop
- Supply and return duct pressure drop
- Obstruction
   pressure drop

#### Diagnose

- Compare each pressure measurement to specification
- Compare each pressure drop to appropriate static pressure budget

- Increase duct system capacity
- Remove restrictive filters and fittings
- Clean coils
- Remove obstructions in duct and reconnect duct







## 1e. Economizer Airflow

#### Measure

- Measure

   economizer airflow
   at minimum
   position
- Measure
   economizer airflow
   at full open position

#### Diagnose

 Compare actual economizer airflow to design airflow



- Adjust economizer
   louvers and
   controls to meet
   design airflow.
- Replace economizer components and controls or replace economizer







## 1f. Power Measurement

#### Measure

- Verify fam motor watt draw for variable speed fans
- Measure system

   watt consumption
   and delivered
   system Btu to
   calculate installed
   system EER



#### Diagnose

- Compare measured motor watt draw to watts reported for equipment rating
- If system Btu delivered/EER Watts consumed, continue testing to discover cause of low performance.

#### AHREXPO Atlanta JAN 14-16 - 2019

- Reduce wattage by
  bringing blower
  motor into spec.
  May require system
  renovation
- Pinpoint system
   defects deteriorating
   performance and
   make needed repairs



## 2. Temperature Measurements

- a. Equipment and ambient air temperatures
- b. Supply and return duct temperatures
- c. Room temperatures
- d. Refrigerant and combustion circuit temperatures

Air temperatures are of little diagnostic worth unless airflow values are measured and considered.







# 2a. Equipment and ambient air temperatures

#### Measure

- Measure dry bulb temperatures for heating and wet bulb temperatures for cooling
- Temperatures entering and exiting the equipment
- Ambient outdoor air



#### Diagnose

- Subtract to find equipment temperature change.
- Considering

   equipment airflow,
   and ambient
   temperature,
   evaluate
   temperature change
  - AHREXPO Atlanta JAN 14-16 - 2019

- Adjust fan speed
- Repair defective
   equipment parts or
   components
- Adjust refrigerant or combustion circuit



## 2a. Equipment and ambient temperatures

#### Measure

- Equipment entering
- Equipment exiting
- WB Cooling
- DB Heating
- Ambient air temperature

#### Diagnose

- Calculate equipment
   temperature change
   and duct losses
- Compare to required temperature change

- Adjust airflow
- Test and adjust refrigerant circuit
- Test and adjust combustion circuit









| What is the equipment $\Delta t$ ? | <b>20°</b> |
|------------------------------------|------------|
| What is the system $\Delta t$ ?    | <b>10°</b> |
| What is the return duct Δt?        | 5°         |
| What is the supply duct Δt?        | <b>5</b> ° |







# **2b.** Supply and Return Duct Temperatures

#### Measure

- Measure dry bulb temperatures entering and exiting the supply and return duct system
- Measure air temperatures in duct locations



#### Diagnose

- Subtract to find duct system temperature loss or gains.
- Total supply and return temperature changes exceeding 10% of equipment ∆t may require repair



- Decrease duct leakage
- Install additional insulation
- Move ducts into conditioned space



## 2c. Room Temperatures

#### Measure

Each rooms air
 temperature (inside wall, chest high, away from windows, supply registers or heat sources.)

#### Diagnose

 Compare room temperature differences to evaluate building temperature balance.

- Balance the HVAC system.
- Prescribe building envelope repairs









## 2d. Refrigerant and combustion circuit temperatures

#### Measure

- Complete airflow, temperature, draft
   02 and CO measurements and
- Complete airside measurement
   before connecting refrigerant gauges



#### Diagnose

- Compare combustion
   measurements to
   combustion testing standards
- Diagnose airside measurements. If needed, connect gauges to continue diagnostics

#### AHREXPO Atlanta JAN 14-16 - 2019

- Make required
  Combustion
  adjustments
  (Airflow, venting,
  CO and Combustion
  repairs)
- Make required airside and refrigerant repays



## 3. Btu capacity and delivery

a. System Btu delivery



## Sensible Btu = Airflow in cfm x temperature change x 1.08

## Total Btu = Airflow in cfm x enthalpy change x 4.5







# 3a. Installed System Btu delivery

#### Measure

- Supply register airflow
- Average Supply Register air temperature and average return grill air temperatures

#### Diagnose

- Apply the system delivered Btu formula
- Compare delivered
   Btu to rated Btu
- Use additional test data to diagnose defects

- Make needed repairs as directed by diagnostics
  - Typical repairs
    include system
    renovation,
    balancing,
    adjustment and
    verification







## Conclusion – Improve HVAC system delivered capacity

To measure, diagnose and repair is the **universal process** to improve performance:

- Used by surgeons and physicians, consultants, the automotive Industry, accounting firms, manufacturers, engineers and maintenance professionals
- HVAC professionals follow this process daily for typical repairs
- New technology and training now enables HVAC professionals to measure, diagnose, repair and improve the delivery of HVAC system efficiency.







Thank You!

# From National Comfort Institute For additional information call: 800-633-7058

For the latest training schedule: <u>NCILink.com/ClassSched</u>

Sign up for our FREE magazine:







